Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 9499, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35680904

RESUMO

Microbes in marine sediments constitute a large percentage of the global marine ecosystem and function to maintain a healthy food web. In continental shelf habitats such as the Gulf of Maine (GoM), relatively little is known of the microbial community abundance, biodiversity, and natural product potential. This report is the first to provide a time-series assessment (2017-2020) of the sediment microbial structure in areas open and closed to fishing within the Stellwagen Bank National Marine Sanctuary (SBNMS). A whole metagenome sequencing (WMS) approach was used to characterize the sediment microbial community. Taxonomic abundance was calculated across seven geographic sites with 14 individual sediment samples collected during the summer and fall seasons. Bioinformatics analyses identified more than 5900 different species across multiple years. Non-metric multidimensional scaling methods and generalized linear models demonstrated that species richness was inversely associated with fishing exposure levels and varied by year. Additionally, the discovery of 12 unique biosynthetic gene clusters (BGCs) collected across sites confirmed the potential for medically relevant natural product discovery in the SBNMS. This study provides a practical assessment of how fishing exposure and temporal trends may affect microbial community structure in a coastal marine sanctuary.


Assuntos
Produtos Biológicos , Microbiota , Biodiversidade , Ecossistema , Sedimentos Geológicos , Caça , Metagenômica , Microbiota/genética
2.
Mar Genomics ; 50: 100718, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31680056

RESUMO

Understanding the marine sediment microbial community structure is of increasing importance to microbiologists since little is known of the diverse taxonomy that exists within this environment. Quantifying microbial species distribution patterns within marine sanctuaries is necessary to address conservation requirements. The objectives of this study were to characterize the relative abundance and biodiversity of metagenome samples of the sediment microbial community in the Stellwagen Bank National Marine Sanctuary (SBNMS). Related to the need for a comprehensive assessment of the microbial habitat within marine sanctuaries is the increased threat of antibiotic-resistant pathogens, coupled with multi-resistant bacterial strains. This has necessitated a renewed search for bioactive compounds in marine benthic habitat. An additional aim was to initiate quantification of biosynthetic gene clusters in species that have potential for natural product and drug discovery relevant to human health. Surficial sediment from 18 samples was collected in the summer and fall of 2017 from three benthic sites in the SBNMS. Microbial DNA was extracted from samples, and sequencing libraries were prepared for taxonomic analysis. Whole metagenome sequencing (WMGS) in combination with a bioinformatics pipeline was employed to delineate the taxa of bacteria present in each sample. Among all sampling sites, biodiversity was higher for summer compared to fall for class (p = 0.0013; F = 4.5) and genus (p = 0.0219; F = 4.4). Actinobacteria was the fifth most abundant class in both seasons (7.81%). Streptomyces was observed to be the fourth most abundant genus in both seasons with significantly higher prevalence in summer compared to fall samples. In summer, site 3 had the highest percentage of Streptomyces (1.71%) compared to sites 2 (1.62%) and 1 (1.37%). The results enabled preliminary quantification of the sequenced hits from the SBNMS sites with the highest potential for harboring secondary metabolite biosynthetic gene clusters for Streptomyces scabrisporus strain (NF3) genomic regions. This study is one of the first to use a whole metagenomics approach to characterize sediment microbial biodiversity in partnership with the SBNMS and demonstrates the potential for future ecological and biomedical research.


Assuntos
Genes Bacterianos , Sedimentos Geológicos/microbiologia , Metagenoma , Microbiota/genética , Família Multigênica , Streptomyces/genética , Oceano Atlântico , Massachusetts , Metagenômica
3.
Sci Rep ; 9(1): 14820, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31616016

RESUMO

Stellwagen Bank National Marine Sanctuary (SBNMS) in the Gulf of Maine is a historic fishing ground renowned for remarkable productivity. Biodiversity conservation is a key management priority for SBNMS and yet data on the diversity of microorganisms, both prokaryotic and eukaryotic, is lacking. This study utilized next generation sequencing to characterize sedimentary communities within SBNMS at three sites over two seasons. Targeting 16S and 18S small subunit (SSU) rRNA genes and fungal Internal Transcribed Spacer (ITS) rDNA sequences, samples contained high diversity at all taxonomic levels and identified 127 phyla, including 115 not previously represented in the SBNMS Management Plan and Environmental Assessment. A majority of the diversity was bacterial, with 59 phyla, but also represented were nine Archaea, 18 Animalia, 14 Chromista, eight Protozoa, two Plantae, and 17 Fungi phyla. Samples from different sites and seasons were dominated by the same high abundance organisms but displayed considerable variation in rare taxa. The levels of biodiversity seen on this small spatial scale suggest that benthic communities of this area support a diverse array of micro- and macro-organisms, and provide a baseline for future studies to assess changes in community structure in response to rapid warming in the Gulf of Maine.


Assuntos
Archaea/genética , Bactérias/genética , Eucariotos/genética , Sedimentos Geológicos/microbiologia , Microbiota/genética , Archaea/classificação , Archaea/isolamento & purificação , Oceano Atlântico , Bactérias/classificação , Bactérias/isolamento & purificação , Conservação dos Recursos Naturais , Código de Barras de DNA Taxonômico , DNA Ambiental/genética , DNA Ambiental/isolamento & purificação , Monitorização de Parâmetros Ecológicos , Eucariotos/classificação , Eucariotos/isolamento & purificação , Maine , Metagenoma , Filogenia , Água do Mar/microbiologia
4.
Environ Monit Assess ; 189(8): 406, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28730580

RESUMO

Water quality impairment by fecal waste in coastal watersheds is a public health issue. The present study provided evidence for the use of a mitochondrial (mtDNA) marker to detect animal fecal sources in surface water. The accurate identification of fecal pollution is based on the notion that fecal microorganisms preferentially inhabit a host animal's gut environment. In contrast, mtDNA host-specific markers are inherent to eukaryotic host cells, which offers the advantage by detecting DNA from the host rather than its fecal bacteria. The present study focused on sampling water presumably from non-point sources (NPS), which can increase bacterial and nitrogen concentrations to receiving water bodies. Stream sampling sites located within the Piscataqua River Watershed (PRW), New Hampshire, USA, were sampled from a range of sites that experienced nitrogen inputs such as sewer and septic systems and suburban runoff. Three mitochondrial (mtDNA) gene marker assays (human, bovine, and canine) were tested from surface water. Nineteen sites were sampled during an 18-month period. Analyses of the combined single and multiplex assay results showed that the proportion of occurrence was highest for bovine (15.6%; n = 77) compared to canine (5.6%; n = 70) and human (5.7%; n = 107) mtDNA gene markers. For the human mtDNA marker, there was a statistically significant relationship between presence vs. absence and land use (Fisher's test p = 0.0031). This result was evident particularly for rural suburban septic, which showed the highest proportion of presence (19.2%) compared to the urban sewered (3.3%), suburban sewered (0%), and agricultural (0%) as well as forested septic (0%) sites. Although further testing across varied land use is needed, our study provides evidence for using the mtDNA marker in large watersheds.


Assuntos
DNA Mitocondrial , Monitoramento Ambiental , Rios/microbiologia , Poluição da Água/análise , Agricultura , Animais , Bactérias , Bovinos , Cães , Fezes/microbiologia , Marcadores Genéticos , Água/análise , Microbiologia da Água , Qualidade da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...