Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(27): 29159-29174, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39005792

RESUMO

Bacterial infections pose a significant threat to human health, constituting a major challenge for healthcare systems. Antibiotic resistance is particularly concerning in the context of treating staphylococcal infections. In addressing this challenge, antimicrobial peptides (AMPs), characterized by their hydrophobic and cationic properties, unique mechanism of action, and remarkable bactericidal and immunomodulatory capabilities, emerge as promising alternatives to conventional antibiotics for tackling bacterial multidrug resistance. This study focuses on the Cry10Aa protein as a template for generating AMPs due to its membrane-penetrating ability. Leveraging the Joker algorithm, six peptide variants were derived from α-helix 3 of Cry10Aa, known for its interaction with lipid bilayers. In vitro, antimicrobial assays determined the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) required for inhibiting the growth of Staphylococcus aureus, Escherichia coli, Acinetobacter baummanii, Enterobacter cloacae, Enterococcus facallis, Klebsiella pneumonia, and Pseudomonas aeruginosa. Time-kill kinetics were performed using the parental peptide AMPCry10Aa, as well as AMPCry10Aa_1 and AMPCry10Aa_5, against E. coli ATCC, S. aureus 111 and S. aureus ATCC strains showing that AMPCry10Aa_1 and AMPCry10Aa_5 peptides can completely reduce the initial bacterial load with less than 2 h of incubation. AMPCry10Aa_1 and AMPCry 10Aa_5 present stability in human serum and activity maintenance up to 37 °C. Cytotoxicity assays, conducted using the MTT method, revealed that all of the tested peptides exhibited cell viability >50% (IC50). The study also encompassed evaluations of the structure and physical-chemical properties. The three-dimensional structures of AMPCry10Aa and AMPCry10Aa_5 were determined through nuclear magnetic resonance (NMR) spectroscopy, indicating the adoption of α-helical segments. Electron paramagnetic resonance (EPR) spectroscopy elucidated the mechanism of action, demonstrating that AMPCry10Aa_5 enters the outer membranes of E. coli and S. aureus, causing substantial increases in lipid fluidity, while AMPCry10Aa slightly increases lipid fluidity in E. coli. In conclusion, the results obtained underscore the potential of Cry10Aa as a source for developing antimicrobial peptides as alternatives to conventional antibiotics, offering a promising avenue in the battle against antibiotic resistance.

2.
Biochimie ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39029576

RESUMO

Bacterial resistance has become a serious public health problem in recent years, thus encouraging the search for new antimicrobial agents. Here, we report an antimicrobial peptide (AMP), called PEPAD, which was designed based on an encrypted peptide from a Kunitz-type plant peptidase inhibitor. PEPAD was capable of rapidly inhibiting and eliminating numerous bacterial species at micromolar concentrations (from 4 µM to 10 µM), with direct membrane activity. It was also observed that the peptide can act synergistically with ciprofloxacin and showed no toxicity in the G. mellonella in vivo assay. Circular dichroism assays revealed that the peptide's secondary structure adopts different scaffolds depending on the environment in which it is inserted. In lipids mimicking bacterial cell membranes, PEPAD adopts a more stable α-helical structure, which is consistent with its membrane-associated mechanism of action. When in contact with lipids mimicking mammalian cells, PEPAD adopts a disordered structure, losing its function and suggesting cellular selectivity. Therefore, these findings make PEPAD a promising candidate for future antimicrobial therapies with low toxicity to the host.

3.
Viruses ; 16(6)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38932240

RESUMO

Human alphaherpesvirus 1 (HSV-1) is a significantly widespread viral pathogen causing recurrent infections that are currently incurable despite available treatment protocols. Studies have highlighted the potential of antimicrobial peptides sourced from Vespula lewisii venom, particularly those belonging to the mastoparan family, as effective against HSV-1. This study aimed to demonstrate the antiviral properties of mastoparans, including mastoparan-L [I5, R8], mastoparan-MO, and [I5, R8] mastoparan, against HSV-1. Initially, Vero cell viability was assessed in the presence of these peptides, followed by the determination of antiviral activity, mechanism of action, and dose-response curves through plaque assays. Structural analyses via circular dichroism and nuclear magnetic resonance were conducted, along with evaluating membrane fluidity changes induced by [I5, R8] mastoparan using fluorescence-labeled lipid vesicles. Cytotoxic assays revealed high cell viability (>80%) at concentrations of 200 µg/mL for mastoparan-L and mastoparan-MO and 50 µg/mL for [I5, R8] mastoparan. Mastoparan-MO and [I5, R8] mastoparan exhibited over 80% HSV-1 inhibition, with up to 99% viral replication inhibition, particularly in the early infection stages. Structural analysis indicated an α-helical structure for [I5, R8] mastoparan, suggesting effective viral particle disruption before cell attachment. Mastoparans present promising prospects for HSV-1 infection control, although further investigation into their mechanisms is warranted.


Assuntos
Antivirais , Herpesvirus Humano 1 , Peptídeos e Proteínas de Sinalização Intercelular , Peptídeos , Venenos de Vespas , Herpesvirus Humano 1/efeitos dos fármacos , Herpesvirus Humano 1/fisiologia , Antivirais/farmacologia , Antivirais/química , Animais , Células Vero , Chlorocebus aethiops , Peptídeos/farmacologia , Peptídeos/química , Venenos de Vespas/farmacologia , Venenos de Vespas/química , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/química , Sobrevivência Celular/efeitos dos fármacos , Humanos , Replicação Viral/efeitos dos fármacos
4.
Lett Appl Microbiol ; 77(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38942450

RESUMO

The increasing resistance to polymyxins in Acinetobacter baumannii has made it even more urgent to develop new treatments. Anti-virulence compounds have been researched as a new solution. Here, we evaluated the modification of virulence features of A. baumannii after acquiring resistance to polymyxin B. The results showed lineages attaining unstable resistance to polymyxin B, except for Ab7 (A. baumannii polymyxin B resistant lineage), which showed stable resistance without an associated fitness cost. Analysis of virulence by a murine sepsis model indicated diminished virulence in Ab7 (A. baumannii polymyxin B resistant lineage) compared with Ab0 (A. baumannii polymyxin B susceptible lineage). Similarly, downregulation of virulence genes was observed by qPCR at 1 and 3 h of growth. However, an increase in bauE, abaI, and pgAB expression was observed after 6 h of growth. Comparison analysis of Ab0, Ab7, and Pseudomonas aeruginosa suggested no biofilm formation by Ab7. In general, although a decrease in virulence was observed in Ab7 when compared with Ab0, some virulence feature that enables infection could be maintained. In light of this, virulence genes bauE, abaI, and pgAB showed a potential relevance in the maintenance of virulence in polymyxin B-resistant strains, making them promising anti-virulence targets.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Antibacterianos , Farmacorresistência Bacteriana , Polimixina B , Polimixina B/farmacologia , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/patogenicidade , Acinetobacter baumannii/genética , Animais , Antibacterianos/farmacologia , Virulência , Camundongos , Infecções por Acinetobacter/microbiologia , Fatores de Virulência/genética , Testes de Sensibilidade Microbiana , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Modelos Animais de Doenças , Sepse/microbiologia , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento
5.
Drug Discov Today ; 28(2): 103444, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36400344

RESUMO

Macrophage intracellular infections are difficult to treat because conventional antibiotics tend to have poor penetration of mammalian cells. As a consequence, the immune response is affected and bacteria remain protected inside macrophages. The use of antimicrobial peptides (AMPs) is one of the alternatives developed as new treatments because of their broad spectrum of action. To improve drug delivery into the intracellular space, extracellular vesicles (EVs) have emerged as an innovative strategy for drug delivery. In particular, apoptotic bodies (ApoBDs) are EVs that exhibit attraction to macrophages, which makes them a promising means of improving AMP delivery to treat macrophage intracellular infections. Here, we review important aspects that should be taken into account when developing ApoBD-AMP conjugates.


Assuntos
Infecções Bacterianas , Vesículas Extracelulares , Animais , Peptídeos Antimicrobianos , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia , Antibacterianos/uso terapêutico , Bactérias , Mamíferos
6.
Molecules ; 26(10)2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34065427

RESUMO

Early plants began colonizing earth about 450 million years ago. During the process of coevolution, their metabolic cellular pathways produced a myriad of natural chemicals, many of which remain uncharacterized biologically. Popular preparations containing some of these molecules have been used medicinally for thousands of years. In Brazilian folk medicine, plant extracts from the bamboo plant Guadua paniculata Munro have been used for the treatment of infections and pain. However, the chemical basis of these therapeutic effects has not yet been identified. Here, we performed protein biochemistry and downstream pharmacological assays to determine the mechanisms underlying the anti-inflammatory and antinociceptive effects of an aqueous extract of the G. paniculata rhizome, which we termed AqGP. The anti-inflammatory and antinociceptive effects of AqGP were assessed in mice. We identified and purified a protein (AgGP), with an amino acid sequence similar to that of thaumatins (~20 kDa), capable of repressing inflammation through downregulation of neutrophil recruitment and of decreasing hyperalgesia in mice. In conclusion, we have identified the molecule and the molecular mechanism responsible for the anti-inflammatory and antinociceptive properties of a plant commonly used in Brazilian folk medicine.


Assuntos
Analgésicos/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Bambusa/química , Extratos Vegetais/uso terapêutico , Sequência de Aminoácidos , Analgésicos/administração & dosagem , Animais , Anti-Inflamatórios/administração & dosagem , Cromatografia de Afinidade , Cromatografia Líquida de Alta Pressão , Relação Dose-Resposta a Droga , Eletroforese em Gel de Poliacrilamida , Feminino , Humanos , Hiperalgesia/tratamento farmacológico , Inflamação/tratamento farmacológico , Células MCF-7 , Masculino , Camundongos , Células NIH 3T3 , Extratos Vegetais/administração & dosagem , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
7.
Eur J Pharm Sci ; 148: 105300, 2020 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-32160953

RESUMO

In order to discover a new compound having anti-inflammatory activity, a nitro-Schiff base was evaluated. The compound was synthesized and characterized by 1H NMR and 13C NMR. The cytotoxic activity was evaluated in vitro by hemolysis and MTT cell viability assay. To evaluate genotoxicity, the micronucleus assay was performed in vivo. The anti-inflammatory effects of the compound were examined using in vivo models of inflammation such as neutrophil migration assay, paw edema, and exudation assay. The production of NO was also estimated in vivo and in vitro. The data showed that the compound did not induce hemolysis at all the tested concentrations. Similarly, the compound did not induce cytotoxicity and genotoxicity to the cells. The neutrophil migration assay showed that the compound reduced the number of neutrophils recruited to the peritoneal cavity by approximately 60% at all the tested concentrations. In the exudation assay, the compound showed a reduction in extravasation by 24%. The paw edema model demonstrated a significant reduction in the paw volume at all the evaluated time points. The production of NO was decreased both in vitro and in vivo. These results suggest that the nitro-Schiff base compound efficiently inhibited inflammation and might be a good candidate for the treatment of inflammatory-associated conditions.


Assuntos
Anti-Inflamatórios/síntese química , Anti-Inflamatórios/farmacologia , Bases de Schiff/química , Animais , Permeabilidade Capilar/efeitos dos fármacos , Carragenina/farmacologia , Edema/tratamento farmacológico , Eritrócitos/efeitos dos fármacos , Feminino , Inflamação , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Neutrófilos/efeitos dos fármacos , Óxido Nítrico/metabolismo
8.
Front Microbiol ; 10: 1690, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31447795

RESUMO

In recent decades, cancer and multidrug resistance have become a worldwide problem, resulting in high morbidity and mortality. Some infectious agents like Streptococcus pneumoniae, Stomatococcus mucilaginous, Staphylococcus spp., E. coli. Klebsiella spp., Pseudomonas aeruginosa, Candida spp., Helicobacter pylori, hepatitis B and C, and human papillomaviruses (HPV) have been associated with the development of cancer. Chemotherapy, radiotherapy and antibiotics are the conventional treatment for cancer and infectious disease. This treatment causes damage in healthy cells and tissues, and usually triggers systemic side-effects, as well as drug resistance. Therefore, the search for new treatments is urgent, in order to improve efficacy and also reduce side-effects. Proteins and peptides originating from bacteria can thus be a promising alternative to conventional treatments used nowadays against cancer and infectious disease. These molecules have demonstrated specific activity against cancer cells and bacterial infection; indeed, proteins and peptides can be considered as future antimicrobial and anticancer drugs. In this context, this review will focus on the desirable characteristics of proteins and peptides from bacterial sources that demonstrated activity against microbial infections and cancer, as well as their efficacy in vitro and in vivo.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...