Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Integr Plant Biol ; 64(2): 592-618, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34807514

RESUMO

High-throughput crop phenotyping, particularly under field conditions, is nowadays perceived as a key factor limiting crop genetic advance. Phenotyping not only facilitates conventional breeding, but it is necessary to fully exploit the capabilities of molecular breeding, and it can be exploited to predict breeding targets for the years ahead at the regional level through more advanced simulation models and decision support systems. In terms of phenotyping, it is necessary to determined which selection traits are relevant in each situation, and which phenotyping tools/methods are available to assess such traits. Remote sensing methodologies are currently the most popular approaches, even when lab-based analyses are still relevant in many circumstances. On top of that, data processing and automation, together with machine learning/deep learning are contributing to the wide range of applications for phenotyping. This review addresses spectral and red-green-blue sensing as the most popular remote sensing approaches, alongside stable isotope composition as an example of a lab-based tool, and root phenotyping, which represents one of the frontiers for field phenotyping. Further, we consider the two most promising forms of aerial platforms (unmanned aerial vehicle and satellites) and some of the emerging data-processing techniques. The review includes three Boxes that examine specific case studies.


Assuntos
Produtos Agrícolas , Melhoramento Vegetal , Produtos Agrícolas/genética , Fenótipo
2.
J Vis Exp ; (144)2019 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-30774118

RESUMO

Ear density, or the number of ears per square meter (ears/m2), is a central focus in many cereal crop breeding programs, such as wheat and barley, representing an important agronomic yield component for estimating grain yield. Therefore, a quick, efficient, and standardized technique for assessing ear density would aid in improving agricultural management, providing improvements in preharvest yield predictions, or could even be used as a tool for crop breeding when it has been defined as a trait of importance. Not only are the current techniques for manual ear density assessments laborious and time-consuming, but they are also without any official standardized protocol, whether by linear meter, area quadrant, or an extrapolation based on plant ear density and plant counts postharvest. An automatic ear counting algorithm is presented in detail for estimating ear density with only sunlight illumination in field conditions based on zenithal (nadir) natural color (red, green, and blue [RGB]) digital images, allowing for high-throughput standardized measurements. Different field trials of durum wheat and barley distributed geographically across Spain during the 2014/2015 and 2015/2016 crop seasons in irrigated and rainfed trials were used to provide representative results. The three-phase protocol includes crop growth stage and field condition planning, image capture guidelines, and a computer algorithm of three steps: (i) a Laplacian frequency filter to remove low- and high-frequency artifacts, (ii) a median filter to reduce high noise, and (iii) segmentation and counting using local maxima peaks for the final count. Minor adjustments to the algorithm code must be made corresponding to the camera resolution, focal length, and distance between the camera and the crop canopy. The results demonstrate a high success rate (higher than 90%) and R2 values (of 0.62-0.75) between the algorithm counts and the manual image-based ear counts for both durum wheat and barley.


Assuntos
Agricultura/métodos , Grão Comestível/química , Hordeum/química , Fotografação/métodos , Triticum/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...