Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 21(7): 9005-10, 2013 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-23571990

RESUMO

We investigate surface enhanced infrared absorption (SEIRA) spectroscopy with gold strip gratings made by standard optical lithography. By exciting surface plasmon polaritons on both air-gold and gold-substrate interfaces, the resonance of the 1D gratings is linearly tunable with the grating period. With the field enhancement at the edge of the gold strips, a SEIRA enhancement factor more than 6000 for PMMA molecules is achieved. The strong SEIRA enhancement together with the easy fabrication makes the gold strip grating a promising candidate for SEIRA experiments.


Assuntos
Ouro/química , Refratometria/instrumentação , Espectrofotometria Infravermelho/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento
2.
Microb Cell Fact ; 9: 86, 2010 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-21073740

RESUMO

BACKGROUND: The efficiency of biotechnological production processes depends on selecting the best performing microbial strain and the optimal cultivation conditions. Thus, many experiments have to be conducted, which conflicts with the demand to speed up drug development processes. Consequently, there is a great need for high-throughput devices that allow rapid and reliable bioprocess development. This need is addressed, for example, by the fiber-optic online-monitoring system BioLector which utilizes the wells of shaken microtiter plates (MTPs) as small-scale fermenters. To further improve the application of MTPs as microbioreactors, in this paper, the BioLector technology is combined with microfluidic bioprocess control in MTPs. To realize a user-friendly system for routine laboratory work, disposable microfluidic MTPs are utilized which are actuated by a user-friendly pneumatic hardware. RESULTS: This novel microfermentation system was tested in pH-controlled batch as well as in fed-batch fermentations of Escherichia coli. The pH-value in the culture broth could be kept in a narrow dead band of 0.03 around the pH-setpoint, by pneumatically dosing ammonia solution and phosphoric acid to each culture well. Furthermore, fed-batch cultivations with linear and exponential feeding of 500 g/L glucose solution were conducted. Finally, the scale-up potential of the microscale fermentations was evaluated by comparing the obtained results to that of fully controlled fermentations in a 2 L laboratory-scale fermenter (working volume of 1 L). The scale-up was realized by keeping the volumetric mass transfer coefficient kLa constant at a value of 460 1/h. The same growth behavior of the E. coli cultures could be observed on both scales. CONCLUSION: In microfluidic MTPs, pH-controlled batch as well as fed-batch fermentations were successfully performed. The liquid dosing as well as the biomass growth kinetics of the process-controlled fermentations agreed well both in the microscale and laboratory scale. In conclusion, a user-friendly and disposable microfluidic system could be established which allows scaleable, fully controlled and fully monitored fermentations in working volumes below 1 milliliter.


Assuntos
Fermentação , Técnicas Analíticas Microfluídicas/instrumentação , Amônia/farmacologia , Escherichia coli/crescimento & desenvolvimento , Glucose/farmacologia , Concentração de Íons de Hidrogênio , Miniaturização , Ácidos Fosfóricos/farmacologia
3.
Biotechnol Bioeng ; 107(3): 497-505, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20517981

RESUMO

In industrial-scale biotechnological processes, the active control of the pH-value combined with the controlled feeding of substrate solutions (fed-batch) is the standard strategy to cultivate both prokaryotic and eukaryotic cells. On the contrary, for small-scale cultivations, much simpler batch experiments with no process control are performed. This lack of process control often hinders researchers to scale-up and scale-down fermentation experiments, because the microbial metabolism and thereby the growth and production kinetics drastically changes depending on the cultivation strategy applied. While small-scale batches are typically performed highly parallel and in high throughput, large-scale cultivations demand sophisticated equipment for process control which is in most cases costly and difficult to handle. Currently, there is no technical system on the market that realizes simple process control in high throughput. The novel concept of a microfermentation system described in this work combines a fiber-optic online-monitoring device for microtiter plates (MTPs)--the BioLector technology--together with microfluidic control of cultivation processes in volumes below 1 mL. In the microfluidic chip, a micropump is integrated to realize distinct substrate flow rates during fed-batch cultivation in microscale. Hence, a cultivation system with several distinct advantages could be established: (1) high information output on a microscale; (2) many experiments can be performed in parallel and be automated using MTPs; (3) this system is user-friendly and can easily be transferred to a disposable single-use system. This article elucidates this new concept and illustrates applications in fermentations of Escherichia coli under pH-controlled and fed-batch conditions in shaken MTPs.


Assuntos
Reatores Biológicos , Biotecnologia/métodos , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Microfluídica , Biomassa , Meios de Cultura/química , Meios de Cultura/metabolismo , Desenho de Equipamento , Fermentação , Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...