Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 39(20): 8064-70, 2005 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-16295876

RESUMO

Cementitious waste forms (CWFs) are an important component of the strategy to stabilize nuclear waste resulting from plutonium production by the U. S. Department of Energy. Technetium (99Tc) is an abundant fission product of particular concern in CWFs because of the high solubility and mobility of Tc(VII), pertechnetate (TcO4-), the stable form of technetium in aerobic environments. CWFs can more effectively stabilize 99Tc if they contain additives that chemically reduce mobile TcO4- to immobile Tc(IV) species. The 99Tc leach rate of reducing CWFs that contain Tc(IV) is much lower than that for CWFs that contain TcO4-. Previous X-ray absorption fine structure studies showed that Tc(IV) species were oxidized to TcO4- in reducing grout samples prepared on a laboratory scale. Whether the oxidizer was atmospheric O2 or NO3- in the waste simulant was not determined. In actual CWFs, rapid oxidation of Tc(IV) by NO3- would be of concern, whereas oxidation by atmospheric O2 would be of less concern due to the slow diffusion and reaction of O2 with the reducing CWF. To address this uncertainty, two series of reducing grouts were prepared using TcO4- containing waste simulants with and without NO3-. In the first series of samples, referred to as "permeable samples", the TcO4- was completely reduced using Na2S, and the samples were sealed in cuvettes made of polystyrene, which has a relatively large O2 diffusion coefficient. In these samples, all of the technetium was initially present as a Tc(IV) sulfide compound, TcSx, which was characterized by extended X-ray absorption fine structure (EXAFS) spectroscopy. The EXAFS data is consistent with a structure consisting of triangular clusters of Tc(IV) centers linked together through a combination of disulfide and sulfide bridges as in MoS3. From the EXAFS model, the stoichiometry of TcSx is TC3S10, which is presumably the compound generally referred to as "Tc2S7". The TcSX initially present in the permeable samples was steadily oxidized over 4 years. In the second series of samples, called "impermeable samples", the TcO4- was not initially completely reduced, and the groutsamples were sealed in cuvettes made of poly-(methyl methacrylate), which has a small O2 diffusion coefficient. In the impermeable samples, the remaining TcO4- continued to be reduced, presumably by blast furnace slag in the grout, as the samples aged. When the impermeable samples were opened and exposed to atmosphere, the lower-valent technetium species were rapidly oxidized to TcO4-.


Assuntos
Resíduos Radioativos/análise , Compostos de Tecnécio/química , Nitratos/química , Oxirredução , Oxigênio/química , Análise Espectral , Sulfetos/química , Compostos de Tecnécio/análise
2.
Environ Sci Technol ; 36(5): 1124-9, 2002 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-11918000

RESUMO

The chemistry of technetium in certain high-level nuclear waste (HLW) tanks at the Hanford Site complicates the treatment and vitrification of HLW. A major problem is the presence, in certain tanks, of unidentified, lower-valent technetium species, which are difficult to remove from the waste by current separation processes. Radiolytic reduction of TcO4- in alkaline solutions containing selected organic compounds, approximating the conditions in HLW, was investigated to determine the classes of compounds that can be formed under these conditions. Insoluble TcO2 x xH2O is the primary radiolysis product with the majority of organic compounds investigated, including citrate, dibutyl phosphate, and aminopolycarboxylates. X-ray absorption fine structure (XAFS) measurements show that TcO2 x xH2O has a one-dimensional chain structure consisting of edge-sharing TcO6 octahedra with bridging oxide and trans water ligands. When diols, such as ethylene glycol, are present, only soluble, Tc(IV) alkoxide compounds are produced. The XAFS and UV-visible spectra of these compounds provide evidence for a binuclear structure similar to (H2EDTA)2Tc2(mu-O)2. The properties of the Tc(IV) alkoxide complexes were determined and are consistent with those observed for the soluble, lower-valent technetium complexes that complicate the treatment of HLW at the Hanford site.


Assuntos
Resíduos Radioativos , Compostos Radiofarmacêuticos/química , Pertecnetato Tc 99m de Sódio/química , Compostos de Tecnécio/química , Oxigênio/química , Eliminação de Resíduos/métodos , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...