Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 327, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658826

RESUMO

Oomycetes are filamentous organisms that resemble fungi in terms of morphology and life cycle, primarily due to convergent evolution. The success of pathogenic oomycetes lies in their ability to adapt and overcome host resistance, occasionally transitioning to new hosts. During plant infection, these organisms secrete effector proteins and other compounds during plant infection, as a molecular arsenal that contributes to their pathogenic success. Genomic sequencing, transcriptomic analysis, and proteomic studies have revealed highly diverse effector repertoires among different oomycete pathogens, highlighting their adaptability and evolution potential.The obligate biotrophic oomycete Plasmopara viticola affects grapevine plants (Vitis vinifera L.) causing the downy mildew disease, with significant economic impact. This disease is devastating in Europe, leading to substantial production losses. Even though Plasmopara viticola is a well-known pathogen, to date there are scarce reviews summarising pathogenicity, virulence, the genetics and molecular mechanisms of interaction with grapevine.This review aims to explore the current knowledge of the infection strategy, lifecycle, effector molecules, and pathogenicity of Plasmopara viticola. The recent sequencing of the Plasmopara viticola genome has provided new insights into understanding the infection strategies employed by this pathogen. Additionally, we will highlight the contributions of omics technologies in unravelling the ongoing evolution of this oomycete, including the first in-plant proteome analysis of the pathogen.


Assuntos
Oomicetos , Doenças das Plantas , Vitis , Oomicetos/patogenicidade , Oomicetos/fisiologia , Doenças das Plantas/microbiologia , Vitis/microbiologia , Vitis/genética , Virulência , Evolução Biológica , Interações Hospedeiro-Patógeno
2.
BMC Plant Biol ; 19(1): 343, 2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-31387524

RESUMO

BACKGROUND: European grapevine cultivars (Vitis vinifera spp.) are highly susceptible to the downy mildew pathogen Plasmopara viticola. Breeding of resistant V. vinifera cultivars is a promising strategy to reduce the impact of disease management. Most cultivars that have been bred for resistance to downy mildew, rely on resistance mediated by the Rpv3 (Resistance to P. viticola) locus. However, despite the extensive use of this locus, little is known about the mechanism of Rpv3-mediated resistance. RESULTS: In this study, Rpv3-mediated defense responses were investigated in Rpv3+ and Rpv3- grapevine cultivars following inoculation with two distinct P. viticola isolates avrRpv3+ and avrRpv3-, with the latter being able to overcome Rpv3 resistance. Based on comparative microscopic, metabolomic and transcriptomic analyses, our results show that the Rpv3-1-mediated resistance is associated with a defense mechanism that triggers synthesis of fungi-toxic stilbenes and programmed cell death (PCD), resulting in reduced but not suppressed pathogen growth and development. Functional annotation of the encoded protein sequence of genes significantly upregulated during the Rpv3-1-mediated defense response revealed putative roles in pathogen recognition, signal transduction and defense responses. CONCLUSION: This study used histochemical, transcriptomic and metabolomic analyses of Rpv3+ and susceptible cultivars inoculated with avirulent and virulent P. viticola isolates to investigate mechanism underlying the Rpv3-1-mediated resistance response. We demonstrated a strong correlation between the expressions of stilbene biosynthesis related genes, the accumulation of fungi-toxic stilbenes, pathogen growth inhibition and PCD.


Assuntos
Resistência à Doença/genética , Genes de Plantas/fisiologia , Estilbenos/metabolismo , Vitis/genética , Regulação da Expressão Gênica de Plantas , Metaboloma , Oomicetos/patogenicidade , Doenças das Plantas/microbiologia , Transcrição Gênica , Transcriptoma , Vitis/imunologia , Vitis/microbiologia
3.
J Plant Physiol ; 176: 118-28, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25590686

RESUMO

Plant microtubules (MTs), in addition to their role in cell division and cell expansion, respond to various stress signals. To understand the biological function of this early response requires non-destructive strategies for visualization in cellular models that are highly responsive to stress signals. We have therefore generated a transgenic tubulin marker line for a cell line from the grapevine Vitis rupestris that readily responds to stress factors of defense-related and abiotic stresses based on a fusion of the green fluorescent protein with Arabidopsis ß-tubulin 6. By a combination of spinning-disk confocal microscopy with quantitative image analysis, we could detect early and specific responses of MTs to defense-related and abiotic stress factors in vivo. We observed that Harpin Z (HrpZ), a bacterial elicitor that can trigger programmed cell death, rapidly eliminated radial MTs, followed by a slower depletion of the cortical array. Jasmonic acid (JA), in contrast, induced bundling of cortical MTs. Auxin reduced the thickness of cortical MTs. This effect followed a characteristic bell-shaped dose-dependency and could revert JA-induced bundling. Impeded cell expansion as a consequence of stress treatment or superoptimal auxin was linked with the appearance of intranuclear tubulin speckles. The early and stimulus-specific responses of MTs are discussed with respect to a function in processing or decoding of stress signals.


Assuntos
Estresse Fisiológico , Tubulina (Proteína)/metabolismo , Vitis/citologia , Vitis/fisiologia , Arabidopsis/metabolismo , Proteínas da Membrana Bacteriana Externa/farmacologia , Ciclopentanos/farmacologia , Proteínas de Fluorescência Verde/metabolismo , Ácidos Indolacéticos/farmacologia , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Oxilipinas/farmacologia , Plantas Geneticamente Modificadas , Estresse Fisiológico/efeitos dos fármacos , Suspensões , Vitis/efeitos dos fármacos
4.
Physiol Plant ; 153(3): 365-80, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25132131

RESUMO

Grapevine (Vitis vinifera ssp. vinifera) is one of the most important fruit species; however, it is highly susceptible to various pathogens, which can cause severe crop losses in viticulture. It has been shown that several WRKY class transcription factors (TFs) are part of the signal transduction cascade, which leads to the activation of plant defense reactions against various pathogens. In the present investigation, a full-length cDNA was isolated from V. vinifera leaf tissue encoding a predicted protein, designated VvWRKY33, which shows the characteristics of group I WRKY protein family. VvWRKY33 induction correlates with the expression of VvPR10.1 (pathogenesis-related 10.1) gene in the leaves of the resistant cultivar 'Regent' after infection with Plasmopara viticola, whereas in the susceptible cultivar 'Lemberger' VvWRKY33 and VvPR10.1 are not induced. Corresponding expression of the TF and VvPR10.1 was even obtained in uninfected ripening berries. In planta, analysis of VvWRKY33 has been performed by ectopic expression of VvWRKY33 in grapevine leaves of greenhouse plants mediated via Agrobacterium tumefaciens transformation. In consequence, VvWRKY33 strongly increases resistance to P. viticola in the susceptible cultivar 'Shiraz' and reduces pathogen sporulation of about 50-70%, indicating a functional role for resistance in grapevine. Complementation of the resistance-deficient Arabidopsis thaliana Columbia-0 (Col-0) mutant line wrky33-1 by constitutive expression of VvWRKY33 restores resistance against Botrytis cinerea to wild-type level and in some complemented mutant lines even exceeds the resistance level of the parental line Col-0. Our results support the involvement of VvWRKY33 in the defense reaction of grapevine against different pathogens.


Assuntos
Resistência à Doença , Regulação da Expressão Gênica de Plantas , Oomicetos/fisiologia , Doenças das Plantas/imunologia , Fatores de Transcrição/genética , Vitis/genética , Arabidopsis/genética , Arabidopsis/imunologia , Proteínas de Arabidopsis/genética , Botrytis/fisiologia , Expressão Gênica , Mutação , Folhas de Planta/genética , Folhas de Planta/imunologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Transgenes , Vitis/imunologia
5.
J Plant Physiol ; 171(13): 1164-73, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24973589

RESUMO

Resistance to abiotic and biotic stress is a central topic for sustainable agriculture, especially in grapevine, one of the field crops with the highest economic output per acreage. As early cellular factors for plant defense, actin microfilaments (AF) are of high relevance. We therefore generated a transgenic actin marker line for grapevine by expressing a fusion protein between green fluorescent protein and the second actin-binding domain of Arabidopsis (Arabidopsis thaliana) fimbrin, AtFIM1. Based on this first cytoskeletal-marker line in grapevine, the response of AFs to phytopathogenic microorganisms could be followed in vivo. Upon inoculation with fluorescently labeled strains of phytopathogenic bacteria, actin responses were confined to the guard cells. In contrast, upon contact with zoospores of Plasmopara viticola, not only the guard cells, but also epidermal pavement cells, where no zoospores had attached responded with the formation of a perinuclear actin basket. Our data support the hypothesis that guard cells act as pacemakers of defense, dominating the responses of the remaining epidermal cells.


Assuntos
Actinas/metabolismo , Regulação da Expressão Gênica de Plantas , Bactérias Gram-Negativas/fisiologia , Oomicetos/fisiologia , Doenças das Plantas/imunologia , Vitis/genética , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Actinas/genética , Arabidopsis/genética , Produtos Agrícolas , Genes Reporter , Marcadores Genéticos/genética , Fenótipo , Doenças das Plantas/microbiologia , Epiderme Vegetal/citologia , Epiderme Vegetal/genética , Epiderme Vegetal/imunologia , Epiderme Vegetal/metabolismo , Folhas de Planta/citologia , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Vitis/citologia , Vitis/imunologia , Vitis/metabolismo
6.
J Exp Bot ; 64(7): 1805-16, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23408828

RESUMO

Plant innate immunity is composed of two layers. Basal immunity is triggered by pathogen-associated molecular patterns (PAMPs) such as the flagellin-peptide flg22 and is termed PAMP-triggered immunity (PTI). In addition, effector-triggered immunity (ETI) linked with programmed cell death and cytoskeletal reorganization can be induced by pathogen-derived factors, such as the Harpin proteins originating from phytopathogenic bacteria. To get insight into the link between cytoskeleton and PTI or ETI, this study followed the responses of actin filaments and microtubules to flg22 and HrpZ in vivo by spinning-disc confocal microscopy in GFP-tagged marker lines of tobacco BY-2. At a concentration that clearly impairs mitosis, flg22 can induce only subtle cytoskeletal responses. In contrast, HrpZ causes a rapid and massive bundling of actin microfilaments (completed in ~20 min, i.e. almost simultaneously with extracellular alkalinization), which is followed by progressive disintegration of actin cables and cytoplasmic microtubules, a loss of cytoplasmic structure, and vacuolar disintegration. Cytoskeletal disruption is proposed as an early event that discriminates HrpZ-triggered ETI-like defence from flg22-triggered PTI.


Assuntos
Proteínas de Bactérias/metabolismo , Citoesqueleto/metabolismo , Nicotiana/metabolismo , Nicotiana/microbiologia , Actinas/metabolismo , Proteínas de Bactérias/genética , Regulação da Expressão Gênica de Plantas , Microtúbulos/metabolismo , Imunidade Vegetal/fisiologia , Nicotiana/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...