Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Anal Behav ; 108(1): 113-124, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28653338

RESUMO

Prolonged space flight, specifically microgravity, presents a problem for space exploration. Animal models with altered connections of the vestibular ear, and thus altered gravity sensation, would allow the examination of the effects of microgravity and how various countermeasures can establish normal function. We describe an experimental apparatus to monitor the effects of ear manipulations to generate asymmetric gravity input on the tadpole escape response. To perform the movement pattern analysis, an imaging apparatus was developed that uses a high-speed camera to obtain time-resolved, high-resolution images of tadpole movements. Movements were recorded in a temperature-controlled test chamber following mechanical stimulation with a solenoid actuator, to elicit a C-start response. Temperature within the test cell was controlled with a recirculating water bath. Xenopus laevis embryos were obtained using a standard fertilization technique. Tadpole response to a controlled perturbation was recorded in unprecedented detail and the approach was validated by describing the distinct differences in response between normal and one-eared tadpoles. The experimental apparatus and methods form an important element of a rigorous investigation into the response of the tadpole vestibular system to mechanical and biochemical manipulations, and can ultimately contribute to improved understanding of the effects of altered gravity perception on humans.


Assuntos
Larva/fisiologia , Movimento/fisiologia , Reflexo de Sobressalto/fisiologia , Xenopus laevis/fisiologia , Animais , Sensação Gravitacional/fisiologia , Temperatura
2.
J Fluid Mech ; 603: 331-365, 2008 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-19746195

RESUMO

Thrust performance and wake structure were investigated for a rigid rectangular panel pitching about its leading edge in a free stream. For Re(C) = O(10(4)), thrust coefficient was found to depend primarily on Strouhal number St and the aspect ratio of the panel AR. Propulsive efficiency was sensitive to aspect ratio only for AR less than 0.83; however, the magnitude of the peak efficiency of a given panel with variation in Strouhal number varied inversely with the amplitude to span ratio A/S, while the Strouhal number of optimum efficiency increased with increasing A/S. Peak efficiencies between 9 % and 21 % were measured. Wake structures corresponding to a subset of the thrust measurements were investigated using dye visualization and digital particle image velocimetry. In general, the wakes divided into two oblique jets; however, when operating at or near peak efficiency, the near wake in many cases represented a Kármán vortex street with the signs of the vortices reversed. The three-dimensional structure of the wakes was investigated in detail for AR = 0.54, A/S = 0.31 and Re(C) = 640. Three distinct wake structures were observed with variation in Strouhal number. For approximately 0.20 < St < 0.25, the main constituent of the wake was a horseshoe vortex shed by the tips and trailing edge of the panel. Streamwise variation in the circulation of the streamwise horseshoe legs was consistent with a spanwise shear layer bridging them. For St > 0.25, a reorganization of some of the spanwise vorticity yielded a bifurcating wake formed by trains of vortex rings connected to the tips of the horseshoes. For St > 0.5, an additional structure formed from a perturbation of the streamwise leg which caused a spanwise expansion. The wake model paradigm established here is robust with variation in Reynolds number and is consistent with structures observed for a wide variety of unsteady flows. Movies are available with the online version of the paper.

3.
Exp Fluids ; 45(3): 461-472, 2008 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-19946574

RESUMO

An apparatus is described for the measurement of unsteady thrust and propulsive efficiency produced by biologically inspired oscillating hydrodynamic propulsors. Force measurement is achieved using a strain-gauge-based force transducer, augmented with a lever to amplify or attenuate the applied force and control the measurement sensitivity and natural frequency of vibration. The lever can be used to tune the system to a specific application and it is shown that, using the lever, the stiffness can be made to increase more rapidly than the measurement sensitivity decreases. Efficiency is computed from measurements of the time-averaged power imparted to the fluid. The apparatus is applied to two different propulsors, demonstrating the versatility of the system; wake visualizations are examined, which provide insight into the physical mechanisms of efficient propulsion.

4.
J Fluid Mech ; 564: 433-443, 2005 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-19746198

RESUMO

Flow visualization is used to interrogate the wake structure produced by a rigid flat panel of aspect ratio (span/chord) 0.54 pitching in a free stream at a Strouhal number of 0.23. At such a low aspect ratio, the streamwise vorticity generated by the plate tends to dominate the formation of the wake. Nevertheless, the wake has the appearance of a three-dimensional von Kármán vortex street, as observed in a wide range of other experiments, and consists of horseshoe vortices of alternating sign shed twice per flapping cycle. The legs of each horseshoe interact with the two subsequent horseshoes in an opposite-sign, then like-sign interaction in which they become entrained. A detailed vortex skeleton model is proposed for the wake formation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...