Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 10(429)2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29467300

RESUMO

Rapidly spreading antibiotic resistance and the low discovery rate of new antimicrobial compounds demand more effective strategies for early drug discovery. One bottleneck in the drug discovery pipeline is the identification of the modes of action (MoAs) of new compounds. We have developed a rapid systematic metabolome profiling strategy to classify the MoAs of bioactive compounds. The method predicted MoA-specific metabolic responses in the nonpathogenic bacterium Mycobacterium smegmatis after treatment with 62 reference compounds with known MoAs and different metabolic and nonmetabolic targets. We then analyzed a library of 212 new antimycobacterial compounds with unknown MoAs from a drug discovery effort by the pharmaceutical company GlaxoSmithKline (GSK). More than 70% of these new compounds induced metabolic responses in M. smegmatis indicative of known MoAs, seven of which were experimentally validated. Only 8% (16) of the compounds appeared to target unconventional cellular processes, illustrating the difficulty in discovering new antibiotics with different MoAs among compounds used as monotherapies. For six of the GSK compounds with potentially new MoAs, the metabolome profiles suggested their ability to interfere with trehalose and lipid metabolism. This was supported by whole-genome sequencing of spontaneous drug-resistant mutants of the pathogen Mycobacterium tuberculosis and in vitro compound-proteome interaction analysis for one of these compounds. Our compendium of drug-metabolome profiles can be used to rapidly query the MoAs of uncharacterized antimicrobial compounds and should be a useful resource for the drug discovery community.


Assuntos
Anti-Infecciosos/farmacologia , Metabolômica/métodos , Mycobacterium smegmatis/efeitos dos fármacos , Espectrometria de Massas , Testes de Sensibilidade Microbiana , Mycobacterium smegmatis/metabolismo
2.
Tuberculosis (Edinb) ; 107: 111-118, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29050757

RESUMO

The objective of this study was to find molecules with anti-mycobacterial activity from a natural compounds library, investigate their mechanisms of resistance, and assess their synergy with antibiotics. We screened a library of 2582 natural compounds with Mycobacterium aurum with the aim of identifying molecules with anti-mycobacterial activity. The hits with the lowest MICs in M. aurum were also tested for their antimicrobial activity in other mycobacterial species including M. tuberculosis complex strains. The chequerboard titration assay was chosen for determining drug interactions in vitro. Spontaneous resistant mutants were isolated and their whole genome sequences compared to wild type and resistant mutants to identify resistance mechanisms. We found that ionophores show anti-mycobacterial activity in vitro. Resistance mechanism to ionophores is mediated by the MmpL5-MmpS5 transporter overexpression. Ionophore A23187 enhanced beta-lactam activity in M. tuberculosis infected macrophage. It will help in the investigation of new drug combinations against bacterial infections including tuberculosis.


Assuntos
Antibióticos Antituberculose/farmacologia , Calcimicina/farmacologia , Ionóforos de Cálcio/farmacologia , Carbapenêmicos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Células Cultivadas , Relação Dose-Resposta a Droga , Farmacorresistência Bacteriana/genética , Sinergismo Farmacológico , Genótipo , Humanos , Macrófagos/microbiologia , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Testes de Sensibilidade Microbiana , Mutação , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...