Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomacromolecules ; 21(9): 3498-3511, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32786536

RESUMO

Self-assembled aggregates formed by semidilute polyanion hyaluronan (hyaluronic acid, HA) and an oppositely charged surfactant tetradecyltrimethylammonium bromide (TTAB) in an aqueous phosphate-buffered saline (PBS) solution have been studied via light scattering (LS), small-angle neutron scattering (SANS), and cryogenic transmission electron microscopy (cryo-TEM). The addition of 0-20 mM TTAB to a 27.7 mM (monomer, 1 wt %) HA solution (597 kDa) in PBS buffer leads to soluble complexes until phase separation occurs near charge equilibrium (>20 mM TTAB). While the viscosity remains rather constant, already small amounts of added TTAB lead to the formation of large globular superstructures, which are built in a hierarchical fashion from a locally threadlike structural arrangement of TTA micelles along the stiff HA chains, within the little changed HA network. These globular domains have radii of 60-100 nm and contain 500-700 TTA micelles, which means that they are very "fluffy" and composed of about 99% water. They do not grow in size or number upon further TTAB addition, but, instead, the additional TTA micelles form further threadlike complexes outside of the big globular domains. Such a type of polyelectrolyte-surfactant complexes (PESCs) has not been described before and has to be attributed to the particular properties of HA, which are high stiffness and relatively weak interactions with oppositely charged micelles due to having the charged carboxylic group close to the polysaccharide backbone. These findings demonstrate that the HA network structure in solution basically remains unaffected by complexation with an oppositely charged surfactant, explaining the unchanged rheological behavior and the formation of a unique PESC local "coacervate" structure within the HA hydrogel network.


Assuntos
Ácido Hialurônico , Tensoativos , Micelas , Viscosidade , Água
2.
Soft Matter ; 13(11): 2253-2263, 2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-28261739

RESUMO

This work discusses the polyelectrolyte sodium hyaluronate (HA) and its polyelectrolyte/surfactant complexes (PESCs) with tetradecyltrimethylammonium bromide (TTAB) in the semi-dilute regime of HA and at high concentrations of TTAB. The structure and flow properties in the surfactant excess region were studied by light scattering and small angle neutron scattering (SANS) as well as by rheology. The unique behaviour of HA to maintain its high viscosity was observed even at very high TTAB concentrations of 496 mM and this effect was systematically studied in the concentration range from 1 to 25 mM HA. From the data, it could be concluded that: (1) extended rod-like structures of the PESCs prevent molecular dissolution of HA by TTAB. (2) HA and TTAB micelles interact rather weakly as seen by a low fraction of bound micelles. (3) At very high TTAB concentrations a decompaction of PESCs (fractal dimension Df going from 2.0 to 1.2) occurs with increasing HA concentration but (4) both the entanglement of HA and the structure of the micelles are not affected.

3.
Chem Commun (Camb) ; 50(72): 10495-8, 2014 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-25068922

RESUMO

The interface as a "screw clamp": the copper-free 1,3-dipolar azide-alkyne cycloaddition at the interface of nanodroplets in miniemulsions was studied in detail by NMR spectroscopic methods. The reaction at the oil-water interface proved to exhibit higher rate constants, increased molecular weights and high regioregularity compared to the reaction in solution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...