Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Magn Reson Imaging ; 2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37864370

RESUMO

BACKGROUND: Deep-learning is widely used for lesion classification. However, in the clinic patient data often has missing images. PURPOSE: To evaluate the use of generated, duplicate and empty(black) images for replacing missing MRI data in AI brain tumor classification tasks. STUDY TYPE: Retrospective. POPULATION: 224 patients (local-dataset; low-grade-glioma (LGG) = 37, high-grade-glioma (HGG) = 187) and 335 patients (public-dataset (BraTS); LGG = 76, HGG = 259). The local-dataset was divided into training (64), validation (16), and internal-test-data (20), while the public-dataset was an independent test-set. FIELD STRENGTH/SEQUENCE: T1WI, T1WI+C, T2WI, and FLAIR images (1.5T/3.0T-MR), obtained from different suppliers. ASSESSMENT: Three image-to-image translation generative-adversarial-network (Pix2Pix-GAN) models were trained on the local-dataset, to generate T1WI, T2WI, and FLAIR images. The rating-and-preference-judgment assessment was performed by three human-readers (radiologist (MD) and two MRI-technicians). Resnet152 was used for classification, and inference was performed on both datasets, with baseline input, and with missing data replaced by 1) generated images; 2) duplication of existing images; and 3) black images. STATISTICAL TESTS: The similarity between the generated and the original images was evaluated using the peak-signal-to-noise-ratio (PSNR) and the structural-similarity-index-measure (SSIM). Classification results were evaluated using accuracy, F1-score and the Kolmogorov-Smirnov test and distance. RESULTS: For baseline-state, the classification model reached to accuracy = 0.93,0.82 on the local and public-datasets. For the missing-data methods, high similarity was obtained between the generated and the original images with mean PSNR = 35.65,32.94 and SSIM = 0.87,0.91 on the local and public-datasets; 39% of the generated-images were labeled as real images by the human-readers. The classification model using generated-images to replace missing images produced the highest results with mean accuracy = 0.91,0.82 compared to 0.85,0.79 for duplicated and 0.77,0.68 for use of black images; DATA CONCLUSION: The feasibility for inference classification model on an MRI dataset with missing images using the Pix2pix-GAN generated images, was shown. The stability and generalization ability of the model was demonstrated by producing consistent results on two independent datasets. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY: Stage 5.

2.
MAGMA ; 36(1): 33-42, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36287282

RESUMO

OBJECTIVE: Treatment response assessment in patients with high-grade gliomas (HGG) is heavily dependent on changes in lesion size on MRI. However, in conventional MRI, treatment-related changes can appear as enhancing tissue, with similar presentation to that of active tumor tissue. We propose a model-free data-driven method for differentiation between these tissues, based on dynamic contrast-enhanced (DCE) MRI. MATERIALS AND METHODS: The study included a total of 66 scans of patients with glioblastoma. Of these, 48 were acquired from 1 MRI vendor and 18 scans were acquired from a different MRI vendor and used as test data. Of the 48, 24 scans had biopsy results. Analysis included semi-automatic arterial input function (AIF) extraction, direct DCE pharmacokinetic-like feature extraction, and unsupervised clustering of the two tissue types. Validation was performed via (a) comparison to biopsy result (b) correlation to literature-based DCE curves for each tissue type, and (c) comparison to clinical outcome. RESULTS: Consistency between the model prediction and biopsy results was found in 20/24 cases. An average correlation of 82% for active tumor and 90% for treatment-related changes was found between the predicted component and population-based templates. An agreement between the predicted results and radiologist's assessment, based on RANO criteria, was found in 11/12 cases. CONCLUSION: The proposed method could serve as a non-invasive method for differentiation between lesion tissue and treatment-related changes.


Assuntos
Glioblastoma , Glioma , Humanos , Glioblastoma/diagnóstico por imagem , Meios de Contraste , Algoritmos , Imageamento por Ressonância Magnética/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...