Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 23(3): 3316-26, 2015 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-25836190

RESUMO

Platinum germanides (PtGe) were investigated for infrared plasmonic applications. Layers of Pt and Ge were deposited and annealed. X-ray diffraction identified PtGe(2) and Pt(2)Ge(3) phases, and x-ray photo-electron spectroscopy determined vertical atomic composition profiles for the films. Complex permittivity spectra were measured by ellipsometry over the 2 to 15 µm wavelength range. Surface plasmon polariton (SPP) characteristics such as propagation length and field penetration depth were calculated. Photon-to-SPP couplers in the form of 1D lamellar gratings were fabricated and characterized in the range 9 - 10.5 µm via wavelength-dependent specular reflection spectra for multiple angles of incidence. The observed resonances compare well with calculated spectra for SPP excitation on PtGe(2). Platinum germanides are CMOS compatible and may serve as SPP hosts for on-chip mid-IR plasmonic components with tighter field confinement than noble-metal hosts.

2.
Opt Express ; 22(3): 3271-83, 2014 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-24663618

RESUMO

Design and simulation results are presented for an ultralow switching energy, resonator based, silicon-on-insulator (SOI) electro-optical modulator. The nanowire waveguide and Q ~8500 resonator are seamlessly integrated via a high-transmission tapered 1D photonic crystal cavity waveguide structure. A lateral p-n junction of modulation length L(m) ~λ is used to alter the index of refraction and, therefore, shift the resonance wavelength via fast carrier depletion. Differential signaling of the device with ΔV ~0.6 Volts allows for a 6 dB extinction ratio at telecom wavelengths with an energy cost as low as 14 attojoules/bit.

3.
Opt Lett ; 37(3): 371-3, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22297356

RESUMO

We experimentally demonstrate a wideband near-perfect light absorber in the midwave IR region using a multiplexed plasmonic metal structure. The wideband near-perfect light absorber is made of two different size gold metal squares multiplexed on a thin dielectric spacing layer on top of a thick metal layer in each unit cell. We also fabricate regular nonmultiplexed structure perfect light absorbers. The multiplexed structure IR absorber absorbs more than 98% of the incident light over a much wider spectral band than regular nonmultiplexed structure perfect light absorbers in the midwave IR region.

4.
Opt Express ; 20(3): 2693-705, 2012 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-22330506

RESUMO

The semimetal antimony, with a plasma frequency ~80 times less than that of gold, is potentially useful as a host for infrared surface polaritons (SPs). Relevant IR SP properties, including the frequency-dependent propagation length and penetration depths for fields into the media on either side of the interface, were determined from optical constants measured on optically-thick thermally-evaporated Sb films over the wavelength range 1 to 40 µm. Plasma and carrier relaxation frequencies were determined from Drude-model fits to these data. The real part of the permittivity is negative for wavelengths beyond 11 µm. Distinct resonant decreases in specular reflected intensity were observed for Sb lamellar gratings in the wavelength range of 6 to 11 µm, where the real part of the permittivity is positive. Both resonance angles and the angular reflectance spectral line shapes are in agreement with theory for excitation of bound surface electromagnetic waves (SPs). Finite element method (FEM) electrodynamic simulations indicate the existence of SP modes under conditions matching the experiments. FEM results also show that such waves depend on having a significant imaginary part of the permittivity, as has been noted earlier for the case of surface exciton polaritons.


Assuntos
Antimônio/química , Modelos Químicos , Ressonância de Plasmônio de Superfície/métodos , Simulação por Computador , Raios Infravermelhos , Luz , Espalhamento de Radiação , Propriedades de Superfície
5.
Rev Sci Instrum ; 82(2): 023101, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21361567

RESUMO

We present the use of direct bonded copper (DBC) for the straightforward fabrication of high power atom chips. Atom chips using DBC have several benefits: excellent copper/substrate adhesion, high purity, thick (>100 µm) copper layers, high substrate thermal conductivity, high aspect ratio wires, the potential for rapid (<8 h) fabrication, and three-dimensional atom chip structures. Two mask options for DBC atom chip fabrication are presented, as well as two methods for etching wire patterns into the copper layer. A test chip, able to support 100 A of current for 2 s without failing, is used to determine the thermal impedance of the DBC. An assembly using two DBC atom chips is used to magnetically trap laser cooled (87)Rb atoms. The wire aspect ratio that optimizes the magnetic field gradient as a function of power dissipation is determined to be 0.84:1 (height:width).

6.
ACS Nano ; 5(2): 1179-89, 2011 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-21247201

RESUMO

We demonstrate the feasibility of fabricating heterojunctions of semiconductors with high mismatches in lattice constant and coefficient of thermal expansion by employing nanomembrane bonding. We investigate the structure of and electrical transport across the interface of a Si/Ge bilayer formed by direct, low-temperature hydrophobic bonding of a 200 nm thick monocrystalline Si(001) membrane to a bulk Ge(001) wafer. The membrane bond has an extremely high quality, with an interfacial region of ∼1 nm. No fracture or delamination is observed for temperature changes greater than 350 °C, despite the approximately 2:1 ratio of thermal-expansion coefficients. Both the Si and the Ge maintain a high degree of crystallinity. The junction is highly conductive. The nonlinear transport behavior is fit with a tunneling model, and the bonding behavior is explained with nanomembrane mechanics.

7.
Opt Express ; 18(19): 20370-83, 2010 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-20940929

RESUMO

Integrated chip-scale optical systems are an attractive platform for the implementation of non-linear optical interactions as they promise compact robust devices that operate reliably with lower power consumption compared to analogs based on bulk nonlinear crystals. The use of guided modes to facilitate nonlinear parametric interactions between optical fields, as opposed to bulk beams, has certain implications on optical parametric oscillations, the most important of which are additional methods for achieving phase synchronism and reduced threshold power due to the tight confinement associated with the guided modes. This work presents a theoretical investigation on the use of polarization dependent mode dispersion in guided wave structures as a means to achieve non-linear parametric oscillations from continuous wave sources with outputs in the mid-infrared region of the spectrum. An Al(2)O(3)/GaP/Al(2)O(3) waveguide system is investigated and shown to produce parametric oscillations at 3 µm to 5 µm from 1 µm to 2 µm input waves utilizing 0.14 µm to 0.30 µm GaP cores. The threshold power is shown to be 320 × less than that obtainable using more traditional quasi-phase matched bulk crystals over the same wavelength range.


Assuntos
Amplificadores Eletrônicos , Gálio/química , Dispositivos Ópticos , Oscilometria/instrumentação , Fosfinas/química , Refratometria/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Raios Infravermelhos
8.
Opt Express ; 18(17): 17997-8002, 2010 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-20721186

RESUMO

We investigate the electromagnetic response of the concentric multi-ring, or the bull's eye, structure as an extension of the dual-ring metamaterial which exhibits electromagnetically-induced transparency (EIT)-like transmission characteristics. Our results show that adding inner rings produces additional EIT-like peaks, and widens the metamaterial's spectral range of operation. Analyses of the dispersion characteristics and induced current distribution further confirmed the peak's EIT-like nature. Impacts of structural and dielectric parameters are also investigated.


Assuntos
Campos Eletromagnéticos , Raios Infravermelhos , Manufaturas , Óptica e Fotônica/métodos , Simulação por Computador
9.
Appl Opt ; 49(16): 3102-10, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20517382

RESUMO

We present a simplified analytic formula that may be used to design gratings intended to couple long-wave infrared radiation to surface plasmons. It is based on the theory of Hessel and Oliner (1965). The recipe is semiempirical, in that it requires knowledge of a surface-impedance modulation amplitude, which is found here as a function of the grating groove depth and the wavelength for silver lamellar gratings at CO(2) laser wavelengths. The optimum groove depth for photon-to-surface-plasmon energy conversion was found by experiment and calculation to be approximately 10%-15% of the wavelength. This value is about twice what has been reported previously in the visible spectral range for sinusoidal grating profiles.

10.
Opt Express ; 18(1): 348-63, 2010 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-20173855

RESUMO

We study guided modes in a conductor-gap-dielectric (CGD) system that includes a low-index dielectric gap layer of deep sub-wavelength thickness sandwiched between a conductor and a high-index dielectric cladding. Analysis of the dispersion equation for CGD modes provides an analytical estimation for the cut-off thickness of the gap layer. This guided mode is unusual because it exists when the gap thickness is less than the cutoff thickness. In the direction normal to the interfaces, the modal electric field is tightly confined within the gap. Sub-wavelength lateral mode confinement is readily provided by a spatial variation of the gap-layer thickness: the modal field localizes at the narrowest gap. Various lateral confinement schemes are proposed and verified by numerical simulations. Possible applications of CGD modes include surface-plasmon nano-lasers (SPASERs) and sensors. If these plasmonic waveguides are scaled for operation at far infrared rather than telecomm wavelengths, then the propagation losses are dramatically reduced, thereby enabling the construction of practical chip-scale plasmonic integrated circuits or PLICs.


Assuntos
Modelos Teóricos , Nanoestruturas/química , Nanotecnologia/instrumentação , Refratometria/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação , Simulação por Computador , Desenho Assistido por Computador , Condutividade Elétrica , Desenho de Equipamento , Análise de Falha de Equipamento
11.
Opt Express ; 16(9): 6507-14, 2008 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-18545354

RESUMO

The realization of plasmo-electronic integrated circuits in a silicon chip will be enabled by two new plasmonic materials that are proposed and modeled in this article. The first is ion-implanted Si (n-type or p-type) at the surface of an intrinsic Si chip. The second is a thin-layer silicide such as Pd(2)Si, NiSi, PtSi(2) WSi(2) or CoSi(2) formed at the Si chip surface. For doping concentrations of 10(20) cm(-3) and 10(21) cm(-3), our dispersion calculations show that bound surface plasmon polaritons will propagate with low loss on stripe-shaped plasmonic waveguides over the 10 to 55 microm and 2.8 to 15 microm wavelength ranges, respectively. For Pd(2)Si/Si plasmonic waveguides, the wavelength range of 0.5 to 7.5 microm is useful and here the propagation lengths are 1 to 2300 microm. For both doped and silicided guides, the SPP mode field extends much more into the air above the stripe than it does into the conductive stripe material.


Assuntos
Óptica e Fotônica , Compostos de Silício/química , Silício/química , Ouro/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...