Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 17815, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36280699

RESUMO

A new family of phase change material based on antimony has recently been explored for applications in near-IR tunable photonics due to its wide bandgap, manifested as broadband transparency from visible to NIR wavelengths. Here, we characterize [Formula: see text] optically and demonstrate the integration of this phase change material in a silicon nitride platform using a microring resonator that can be thermally tuned using the amorphous and crystalline states of the phase change material, achieving extinction ratios of up to 18 dB in the C-band. We extract the thermo-optic coefficient of the amorphous and crystalline states of the [Formula: see text] to be 3.4 x [Formula: see text] and 0.1 x 10[Formula: see text], respectively. Additionally, we detail the first observation of bi-directional shifting for permanent trimming of a non-volatile switch using continuous wave (CW) laser exposure ([Formula: see text] to 5.1 dBm) with a modulation in effective refractive index ranging from +5.23 x [Formula: see text] to [Formula: see text] x 10[Formula: see text]. This work experimentally verifies optical phase modifications and permanent trimming of [Formula: see text], enabling potential applications such as optically controlled memories and weights for neuromorphic architecture and high density switch matrix using a multi-layer PECVD based photonic integrated circuit.

2.
Sensors (Basel) ; 22(11)2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35684846

RESUMO

In this review we present some of the recent advances in the field of silicon nitride photonic integrated circuits. The review focuses on the material deposition techniques currently available, illustrating the capabilities of each technique. The review then expands on the functionalisation of the platform to achieve nonlinear processing, optical modulation, nonvolatile optical memories and integration with III-V materials to obtain lasing or gain capabilities.


Assuntos
Fótons , Compostos de Silício
3.
Appl Opt ; 58(19): 5165-5169, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31503610

RESUMO

We show that subwavelength Si-rich nitride waveguides efficiently sustain high-speed transmissions at 2 µm. We report the transmission of a 10 Gbit/s signal over 3.5 cm with negligible power penalty. Parametric conversion in the pulsed pump regime is also demonstrated using the same waveguide structure with an efficiency as high as -18 dB.

4.
Opt Lett ; 43(6): 1251-1254, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29543264

RESUMO

We report the design and fabrication of a compact angled multimode interferometer (AMMI) on a 600 nm thick N-rich silicon nitride platform (n=1.92) optimized to match the International Telecommunication Union coarse wavelength division (de)multiplexing standard in the O telecommunication band. The demonstrated device exhibited a good spectral response with Δλ=20 nm, BW3 dB∼11 nm, IL<1.5 dB, and XT∼20 dB. Additionally, it showed a high tolerance to dimensional errors <120 pm/nm and low sensitivity to temperature variations <20 pm/°C, respectively. This device had a footprint of 0.02 mm×1.7 mm with the advantage of a simple design and a back-end-of-line compatible fabrication process that enables multilayer integration schemes due to its processing temperature <400°C.

5.
Opt Express ; 25(22): 27310-27320, 2017 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-29092207

RESUMO

WDM components fabricated on the silicon-on-insulator platform have transmission characteristics that are sensitive to dimensional errors and temperature variations due to the high refractive index and thermo-optic coefficient of Si, respectively. We propose the use of NH3-free SiNx layers to fabricate athermal (de)multiplexers based on angled multimode interferometers (AMMI) in order to achieve good spectral responses with high tolerance to dimensional errors. With this approach we have shown that stoichiometric and N-rich SiNx layers can be used to fabricate AMMIs with cross-talk <30dB, insertion loss <2.5dB, sensitivity to dimensional errors <120pm/nm, and wavelength shift <10pm/°C.

6.
Opt Express ; 25(22): 27334-27340, 2017 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-29092209

RESUMO

Ultrahigh-Q Photonic Crystal cavities were realized in a suspended Silicon Rich Nitride (SiNx) platform for applications at telecom wavelengths. Using a line width modulated cavity design we achieved a simulated Q of 520,000 with a modal volume of 0.77(λ/n)3. The fabricated cavities were measured using the resonance scattering technique and we demonstrated a measured Q of 120,000. The experimental spectra at different input power also indicate that the non-linear losses are negligible in this material platform.

7.
Opt Express ; 25(4): 3214-3221, 2017 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-28241537

RESUMO

We demonstrate design, fabrication, and characterization of two-dimensional photonic crystal (PhC) waveguides on a suspended silicon rich nitride (SRN) platform for applications at telecom wavelengths. Simulation results suggest that a 210 nm photonic band gap can be achieved in such PhC structures. We also developed a fabrication process to realize suspended PhC waveguides with a transmission bandwidth of 20 nm for a W1 PhC waveguide and over 70 nm for a W0.7 PhC waveguide. Using the Fabry-Pérot oscillations of the transmission spectrum we estimated a group index of over 110 for W1 PhC waveguides. For a W1 waveguide we estimated a propagation loss of 53 dB/cm for a group index of 37 and for a W0.7 waveguide the lowest propagation was 4.6 dB/cm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...