Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Turk J Biol ; 44(4): 188-200, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32922126

RESUMO

A Kunitz-type trypsin inhibitor protein has been purified and characterized from seeds of Acacia nilotica L. LC-MS/MS analysis of Acacia nilotica trypsin inhibitor (AnTI) provided the N-terminal fragment of 11 amino acids which yielded 100% identity with already reported Kunitz-type trypsin inhibitor protein of Acacia confusa (AcTI) in UniProtKB database search. SDS-PAGE showed a single band of ~21 kDa under nonreduced condition and appearance of a daughter band (17 kDa) in the presence of ß-mercaptoethanol indicating the presence of interchain disulfide linkage typical for Kunitz-type trypsin inhibitors. AnTI was purified from seed extract by using a combination of anion exchange and gel filtration chromatography. Since AnTI showed maximum homology with AcTI, a molecular structure of AcTI was predicted which showed highly ß-sheeted molecular conformation similar to crystallographic structure of Enterolobium contortisiliquum trypsin inhibitor (EcTI). AnTI (20 µg) produces significant population inhibition against different human pathogenic bacteria along strong antifungal activity (50 µg). Entomotoxin potential of AnTI was evaluated against two stored grain insect pests Tribolium castaneum (Herbst) (Tenebrionidae: Coleoptera) and Sitophilus oryzae (Linnaeus) (Curculionidae: Coleoptera). Statistically significant mortality of T. castaneum adults was observed at 1.5 mg after 15 days in comparison to control. Additionally, number of total eggs, larvae, pupae, adults, and their male/female ratio were also severely reduced in comparison to control. Similarly, two generation progeny of S. oryzae was studied after mixing AnTI with rice kernels. Mean percent mortality of adult population was significantly higher after 9 days of exposure in comparison to control group. AnTI significantly reduced the F1 generation while little mortality was observed for F2 generation. Exploration of such potent molecules is the prerequisite of our time regarding the anticipation of postantibiotic era and the development of insect resistance against chemical pesticides.

2.
FASEB J ; 34(8): 9869-9883, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32533745

RESUMO

Proteolytic cleavage of the cell adhesion molecule L1 (L1) in brain tissue and in cultured cerebellar neurons results in the generation and nuclear import of a 30 kDa fragment comprising most of L1's C-terminal, intracellular domain. In search of molecules that interact with this domain, we performed affinity chromatography with the recombinant intracellular L1 domain and a nuclear extract from mouse brains, and identified potential nuclear L1 binding partners involved in transcriptional regulation, RNA processing and transport, DNA repair, chromatin remodeling, and nucleocytoplasmic transport. By co-immunoprecipitation and enzyme-linked immunosorbent assay using recombinant proteins, we verified the direct interaction between L1 and the nuclear binding partners non-POU domain containing octamer-binding protein and splicing factor proline/glutamine-rich. The proximity ligation assay confirmed this close interaction in cultures of cerebellar granule cells. Our findings suggest that L1 fragments regulate multiple nuclear functions in the nervous system. We discuss possible physiological and pathological roles of these interactions in regulation of chromatin structure, gene expression, RNA processing, and DNA repair.


Assuntos
Núcleo Celular/metabolismo , Citoplasma/metabolismo , Molécula L1 de Adesão de Célula Nervosa/fisiologia , Neurônios/metabolismo , Proteínas Nucleares/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ligação Proteica , Domínios Proteicos
3.
Mol Metab ; 34: 124-135, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32180552

RESUMO

OBJECTIVE: Considerable uncertainty remains regarding the veracity of measuring myokine irisin more than seven years after its original description. Unresolved issues include the nature of transcription of the irisin precursor fibronectin type III domain containing 5 (FNDC5) gene across species, the reliability of irisin levels measured with commercial enzyme-linked immunosorbent assays (ELISAs), and the overall validity of the recently published reference values for human serum measured with quantitative mass spectrometry. We utilized multiple species and measures to evaluate the robustness of commonly used reagents and methods for reporting irisin. METHODS: Amplification of cDNA was used to assess the FNDC5 transcript patterns in humans and mice. The specificity and sensitivity of different irisin antibodies were examined via western blotting. Quantification of circulating native irisin was conducted with mass spectrometry using an absolute quantification peptide for irisin. RESULTS: We show that there is a greater transcript diversity of human FNDC5 than currently annotated, but no indication of the expression of transcripts leading to a truncated form of irisin. Available irisin antibodies still bind to patterns of unspecific serum proteins, which compromise reliable measurements of irisin with ELISAs. Absolute quantification of irisin with labeled peptides by mass spectrometry is an advanced method but requires a multi-step sample preparation introducing uncontrollable variations in the measurement. CONCLUSION: Our data represent an explicit warning against measuring circulating irisin using available methods. Measuring irisin is akin to chasing shadows.


Assuntos
Fibronectinas/metabolismo , Músculos/metabolismo , Animais , Equidae , Fibronectinas/sangue , Fibronectinas/genética , Cabras , Humanos , Espectrometria de Massas , Camundongos , Papio , Coelhos , Ratos
4.
Sci Rep ; 10(1): 3444, 2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-32103102

RESUMO

Storing grains remain vulnerable to insect pest attack. The present study developed a biopesticide using biomolecules and their encapsulation in nanoparticles. A 25 kDa cysteine protease extracted from seeds of Albizia procera (ApCP) was encapsulated in graphene quantum dots (GQDs). The insecticidal activity of ApCP, with or without GQDs, against two stored grain insect pests, Tribolium castaneum (Herbst) and Rhyzopertha dominica (Fabricius) was explored. Insects were exposed to three concentrations 7.0, 3.5 and 1.7 mg of ApCP per a gram of wheat flour and grains. The insecticidal activity of ApCP encapsulated with GQDs was improved compared to that of ApCP without GQDs for both insect pests. The number of eggs and larvae of T. castaneum was reduced by 49% and 86%, respectively. Larval mortality was increased to 72%, and adult eclosion of T. castaneum was reduced by 98% at a 7.0 mg/g concentration of ApCP with GQDs compared to that of ApCP without GQDs. Exposure to 7.0 mg/g ApCP with GQDs, the number of R. dominica eggs and larvae was reduced by 72% and 92% respectively, larval mortality was increased by 90%, and eclosion was reduced by 97%. The extraction, purification, characterization, quantification and encapsulation of ApCP with GQDs were also studied. Cysteine protease nanocarriers have the potential to control stored grain insect pests.


Assuntos
Besouros/efeitos dos fármacos , Cisteína Proteases/farmacologia , Grafite/química , Pontos Quânticos/química , Albizzia/enzimologia , Albizzia/crescimento & desenvolvimento , Sequência de Aminoácidos , Animais , Besouros/crescimento & desenvolvimento , Cisteína Proteases/química , Cisteína Proteases/isolamento & purificação , Controle de Insetos , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Pontos Quânticos/toxicidade , Sementes/enzimologia , Alinhamento de Sequência , Tribolium/efeitos dos fármacos , Tribolium/crescimento & desenvolvimento
5.
Kaohsiung J Med Sci ; 34(12): 673-683, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30527201

RESUMO

The present study describes the predicted model and functional characterization of an endochitinase (30 kDa) from corms of Gladiolus grandiflorus. ESI-QTOF-MS generated peptide showed 96% sequence homology with family 18, Class III acidic endochitinase of Gladiolus gandavensis. Purified G. grandiflorus chitinase (GgChi) hydrolyzed 4-methylumbelliferyl ß-d-N,N',N''-triacetylchitotriose substrate showing specific endochitinase activity. Since no structural details of GgChi were available in the Protein Data Bank (PDB), a homology model was predicted using the coordinate information of Crocus vernus chitinase (PDB ID: 3SIM). Ramachandran plot indicated 84.5% in most favored region, 14.8% in additional and 0.6% in generously allowed region while no residue in disallowed region. The predicted structure indicated a highly conserved (ß/α)8 (TIM barrel) structure similar to the family 18, class III chitinases. The GgChi also showed sequence and structural homologies with other active chitinases. The GgChi (50 µg/disc) showed no antibacterial activity, but did provide mild growth inhibition of phytopathogenic fungus Fusarium oxysporum at a concentration of 500 µg/well Similarly, insect toxicity bioassays of GgChi (50 µg) against nymphs of Bemisia tabaci showed 14% reduction in adult emergence and 14% increase in mortality rate in comparison to control values. The GgChi (1.5 mg) protein showed significant reduction in a population of flour beetle (Tribolium castaneum) after 35 days, but lower reactivity against rice weevil (Sitophilus oryzae). The results of this study provide detai.led insight on functional characterization of a family 18 class III acidic plant endochitinase.


Assuntos
Quitinases/química , Quitinases/metabolismo , Iridaceae/enzimologia , Modelos Moleculares , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Animais , Antibacterianos/farmacologia , Antifúngicos/farmacologia , Bactérias/efeitos dos fármacos , Quitinases/isolamento & purificação , Bases de Dados de Proteínas , Ensaios Enzimáticos , Fungos/efeitos dos fármacos , Hemípteros/efeitos dos fármacos , Inseticidas/toxicidade , Testes de Sensibilidade Microbiana , Proteínas de Plantas/isolamento & purificação , Espectrometria de Massas por Ionização por Electrospray , Homologia Estrutural de Proteína
6.
PLoS Pathog ; 12(6): e1005660, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27300509

RESUMO

Yersinia outer protein M (YopM) is a crucial immunosuppressive effector of the plaque agent Yersinia pestis and other pathogenic Yersinia species. YopM enters the nucleus of host cells but neither the mechanisms governing its nucleocytoplasmic shuttling nor its intranuclear activities are known. Here we identify the DEAD-box helicase 3 (DDX3) as a novel interaction partner of Y. enterocolitica YopM and present the three-dimensional structure of a YopM:DDX3 complex. Knockdown of DDX3 or inhibition of the exportin chromosomal maintenance 1 (CRM1) increased the nuclear level of YopM suggesting that YopM exploits DDX3 to exit the nucleus via the CRM1 export pathway. Increased nuclear YopM levels caused enhanced phosphorylation of Ribosomal S6 Kinase 1 (RSK1) in the nucleus. In Y. enterocolitica infected primary human macrophages YopM increased the level of Interleukin-10 (IL-10) mRNA and this effect required interaction of YopM with RSK and was enhanced by blocking YopM's nuclear export. We propose that the DDX3/CRM1 mediated nucleocytoplasmic shuttling of YopM determines the extent of phosphorylation of RSK in the nucleus to control transcription of immunosuppressive cytokines.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , RNA Helicases DEAD-box/metabolismo , Regulação da Expressão Gênica/fisiologia , Proteínas Quinases S6 Ribossômicas 90-kDa/biossíntese , Yersiniose/imunologia , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/imunologia , Western Blotting , Linhagem Celular , Núcleo Celular/metabolismo , Cristalografia por Raios X , RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/imunologia , Imunofluorescência , Sequenciamento de Nucleotídeos em Larga Escala , Interações Hospedeiro-Parasita/fisiologia , Humanos , Tolerância Imunológica/fisiologia , Imunoprecipitação , Macrófagos/microbiologia , Espectrometria de Massas , Microscopia Confocal , Reação em Cadeia da Polimerase , Transporte Proteico/fisiologia , Fatores de Virulência/imunologia , Fatores de Virulência/metabolismo , Yersiniose/metabolismo , Yersinia enterocolitica
7.
Glia ; 64(6): 896-910, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26992135

RESUMO

Prion protein (PrP) protects neural cells against oxidative stress, hypoxia, ischemia, and hypoglycemia. In the present study we confirm that cultured PrP-deficient neurons are more sensitive to oxidative stress than wild-type neurons and present the novel findings that wild-type, but not PrP-deficient astrocytes protect wild-type cerebellar neurons against oxidative stress and that exosomes released from stressed wild-type, but not from stressed PrP-deficient astrocytes reduce neuronal cell death induced by oxidative stress. We show that neuroprotection by exosomes of stressed astrocytes depends on exosomal PrP but not on neuronal PrP and that astrocyte-derived exosomal PrP enters into neurons, suggesting neuronal uptake of astrocyte-derived exosomes. Upon exposure of wild-type astrocytes to hypoxic or ischemic conditions PrP levels in exosomes were increased. By mass spectrometry and Western blot analysis, we detected increased levels of 37/67 kDa laminin receptor, apolipoprotein E and the ribosomal proteins S3 and P0, and decreased levels of clusterin/apolipoprotein J in exosomes from wild-type astrocytes exposed to oxygen/glucose deprivation relative to exosomes from astrocytes maintained under normoxic conditions. The levels of these proteins were not altered in exosomes from stressed PrP-deficient astrocytes relative to unstressed PrP-deficient astrocytes. These results indicate that PrP in astrocytes is a sensor for oxidative stress and mediates beneficial cellular responses, e.g. release of exosomes carrying PrP and other molecules, resulting in improved survival of neurons under hypoxic and ischemic conditions.


Assuntos
Astrócitos/metabolismo , Morte Celular/fisiologia , Exossomos/metabolismo , Hipóxia/metabolismo , Proteínas Priônicas/metabolismo , Animais , Sobrevivência Celular , Células Cultivadas , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo
8.
FASEB J ; 30(5): 1849-64, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26839380

RESUMO

Cardiac myosin-binding protein C (cMyBP-C) regulates actin-myosin interaction and thereby cardiac myocyte contraction and relaxation. This physiologic function is regulated by cMyBP-C phosphorylation. In our study, reduced site-specific cMyBP-C phosphorylation coincided with increased S-glutathiolation in ventricular tissue from patients with dilated or ischemic cardiomyopathy compared to nonfailing donors. We used redox proteomics, to identify constitutive and disease-specific S-glutathiolation sites in cMyBP-C in donor and patient samples, respectively. Among those, a cysteine cluster in the vicinity of the regulatory phosphorylation sites within the myosin S2 interaction domain C1-M-C2 was identified and showed enhanced S-glutathiolation in patients. In vitro S-glutathiolation of recombinant cMyBP-C C1-M-C2 occurred predominantly at Cys(249), which attenuated phosphorylation by protein kinases. Exposure to glutathione disulfide induced cMyBP-C S-glutathiolation, which functionally decelerated the kinetics of Ca(2+)-activated force development in ventricular myocytes from wild-type, but not those from Mybpc3-targeted knockout mice. These oxidation events abrogate protein kinase-mediated phosphorylation of cMyBP-C and therefore potentially contribute to the reduction of its phosphorylation and the contractile dysfunction observed in human heart failure.-Stathopoulou, K., Wittig, I., Heidler, J., Piasecki, A., Richter, F., Diering, S., van der Velden, J., Buck, F., Donzelli, S., Schröder, E., Wijnker, P. J. M., Voigt, N., Dobrev, D., Sadayappan, S., Eschenhagen, T., Carrier, L., Eaton, P., Cuello, F. S-glutathiolation impairs phosphoregulation and function of cardiac myosin-binding protein C in human heart failure.


Assuntos
Proteínas de Transporte/metabolismo , Regulação da Expressão Gênica/fisiologia , Glutationa/metabolismo , Insuficiência Cardíaca/metabolismo , Adulto , Animais , Fármacos Cardiovasculares/uso terapêutico , Proteínas de Transporte/genética , Feminino , Insuficiência Cardíaca/tratamento farmacológico , Ventrículos do Coração/metabolismo , Humanos , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Oxirredução , Fosforilação , Adulto Jovem
9.
Cancer Res ; 75(24): 5367-77, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26573792

RESUMO

Disseminated tumor cells (DTC), which share mesenchymal and epithelial properties, are considered to be metastasis-initiating cells in breast cancer. However, the mechanisms supporting DTC survival are poorly understood. DTC extravasation into the bone marrow may be encouraged by low oxygen concentrations that trigger metabolic and molecular alterations contributing to DTC survival. Here, we investigated how the unfolded protein response (UPR), an important cytoprotective program induced by hypoxia, affects the behavior of stressed cancer cells. DTC cell lines established from the bone marrow of patients with breast cancer (BC-M1), lung cancer, (LC-M1), and prostate cancer (PC-E1) were subjected to hypoxic and hypoglycemic conditions. BC-M1 and LC-M1 exhibiting mesenchymal and epithelial properties adapted readily to hypoxia and glucose starvation. Upregulation of UPR proteins, such as the glucose-regulated protein Grp78, induced the formation of filamentous networks, resulting in proliferative advantages and sustained survival under total glucose deprivation. High Grp78 expression correlated with mesenchymal attributes of breast and lung cancer cells and with poor differentiation in clinical samples of primary breast and lung carcinomas. In DTCs isolated from bone marrow specimens from breast cancer patients, Grp78-positive stress granules were observed, consistent with the likelihood these cells were exposed to acute cell stress. Overall, our findings provide the first evidence that the UPR is activated in DTC in the bone marrow from cancer patients, warranting further study of this cell stress pathway as a predictive biomarker for recurrent metastatic disease.


Assuntos
Medula Óssea/patologia , Neoplasias da Mama/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Resposta a Proteínas não Dobradas/fisiologia , Adaptação Fisiológica/fisiologia , Western Blotting , Hipóxia Celular/fisiologia , Linhagem Celular , Chaperona BiP do Retículo Endoplasmático , Feminino , Humanos , Imuno-Histoquímica , Análise Serial de Tecidos
10.
Biomed Res Int ; 2015: 719316, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26146628

RESUMO

Arteriogenesis is an inflammatory process associated with rapid cellular changes involving vascular resident endothelial progenitor cells (VR-EPCs). Extracellular cell surface bound 20S proteasome has been implicated to play an important role in inflammatory processes. In our search for antigens initially regulated during collateral growth mAb CTA 157-2 was generated against membrane fractions of growing collateral vessels. CTA 157-2 stained endothelium of growing collateral vessels and the cell surface of VR-EPCs. CTA 157-2 bound a protein complex (760 kDa) that was identified as 26 kDa α7 and 21 kDa ß3 subunit of 20S proteasome in mass spectrometry. Furthermore we demonstrated specific staining of 20S proteasome after immunoprecipitation of VR-EPC membrane extract with CTA 157-2 sepharose beads. Functionally, CTA 157-2 enhanced concentration dependently AMC (7-amino-4-methylcoumarin) cleavage from LLVY (N-Succinyl-Leu-Leu-Val-Tyr) by recombinant 20S proteasome as well as proteasomal activity in VR-EPC extracts. Proliferation of VR-EPCs (BrdU incorporation) was reduced by CTA 157-2. Infusion of the antibody into the collateral circulation reduced number of collateral arteries, collateral proliferation, and collateral conductance in vivo. In conclusion our results indicate that extracellular cell surface bound 20S proteasome influences VR-EPC function in vitro and collateral growth in vivo.


Assuntos
Vasos Sanguíneos/imunologia , Circulação Colateral/imunologia , Inflamação/imunologia , Complexo de Endopeptidases do Proteassoma/imunologia , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/imunologia , Antígenos de Superfície/imunologia , Vasos Sanguíneos/crescimento & desenvolvimento , Proliferação de Células/efeitos dos fármacos , Células Endoteliais/imunologia , Células Progenitoras Endoteliais/imunologia , Inflamação/patologia , Ratos
11.
Sci Rep ; 5: 8959, 2015 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-25753532

RESUMO

Control of immunologic tolerance and homeostasis rely on Foxp3(+)CD4(+)CD25(+) regulatory T cells (Tregs) that constitutively express the high affinity receptor for Interleukin-2, CD25. Tregs proliferate in response to injections of IL-2/anti-IL-2 antibody complexes or low doses of IL-2. However, little is known about endogenous mechanisms that regulate the sensitivity of CD25 to signaling by IL-2. Here we demonstrate that CD25 is ADP-ribosylated at Arg35 in the IL-2 binding site by ecto-ADP-ribosyltransferase ARTC2.2, a toxin-related GPI-anchored ecto-enzyme. ADP-ribosylation inhibits binding of IL-2 by CD25, IL-2- induced phosphorylation of STAT5, and IL-2-dependent cell proliferation. Our study elucidates an as-yet-unrecognized mechanism to tune IL-2 signaling. This newly found mechanism might thwart Tregs at sites of inflammation and thereby permit a more potent response of activated effector T cells.


Assuntos
Tolerância Imunológica , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Interleucina-2/metabolismo , Linfócitos T Reguladores/metabolismo , Adenosina Difosfato Ribose/análogos & derivados , Adenosina Difosfato Ribose/metabolismo , Animais , Linfócitos T CD4-Positivos/imunologia , Proliferação de Células/genética , Células HEK293 , Humanos , Interleucina-2/genética , Subunidade alfa de Receptor de Interleucina-2/genética , Camundongos , Fosforilação , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais , Linfócitos T Reguladores/imunologia
12.
Curr Top Microbiol Immunol ; 384: 33-50, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25113886

RESUMO

The analysis of ADP-ribosylated proteins is a challenging task, on the one hand because of the diversity of the target proteins and the modification sites, on the other hand because of the particular problems posed by the analysis of ADP-ribosylated peptides. ADP-ribosylated proteins can be detected in in vitro experiments after the incorporation of radioactively labeled or chemically modified ADP-ribose. Endogenously ADP-ribosylated proteins may be detected and enriched by antibodies directed against the ADP-ribosyl moiety or by ADP-ribosyl binding macro domains. The determination of the exact attachment site of the modification, which is a prerequisite for the understanding of the specificity of the various ADP-ribosyl transferases and the structural consequences of ADP-ribosylation, necessitates the proteolytic cleavage of the proteins. The resulting peptides can afterwards be enriched either by IMAC (using the affinity of the pyrophosphate group for heavy metal ions) or by immobilized boronic acid beads (using the affinity of the vicinal ribose hydroxy groups for boronic acid). The identification of the modified peptides usually requires tandem mass spectrometric measurements. Problems that hamper the mass spectrometric analysis by collision-induced decay (CID) can be circumvented either by the application of different fragmentation techniques (electron transfer or electron capture dissociation; ETD or ECD) or by enzymatic cleavage of the ADP-ribosyl group to ribosyl-phosphate.


Assuntos
Adenosina Difosfato Ribose/metabolismo , Proteínas/química , Proteínas/metabolismo , ADP Ribose Transferases/metabolismo , Animais , Humanos , Espectrometria de Massas , Peptídeos/química , Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional
13.
J Neurosci ; 34(44): 14606-23, 2014 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-25355214

RESUMO

The cell adhesion molecule close homolog of L1 (CHL1) plays important functional roles in the developing and adult nervous system. In search of the binding partners that mediate the diverse and sometimes opposing functions of CHL1, the extracellular matrix-associated proteins vitronectin and plasminogen activator inhibitor-2 (PAI-2) were identified as novel CHL1 interaction partners and tested for involvement in CHL1-dependent functions during mouse cerebellar development. CHL1-induced cerebellar neurite outgrowth and cell migration at postnatal days 6-8 were inhibited by a CHL1-derived peptide comprising the integrin binding RGD motif, and by antibodies against vitronectin or several integrins, indicating a vitronectin-dependent integrin-mediated pathway. A PAI-2-derived peptide, or antibodies against PAI-2, urokinase type plasminogen activator (uPA), uPA receptor, and several integrins reduced cell migration. CHL1 colocalized with vitronectin, PAI-2, and several integrins in cerebellar granule cells, suggesting an association among these proteins. Interestingly, at the slightly earlier age of 4-5 d, cerebellar neurons did not depend on CHL1 for neuritogenesis and cell migration. However, differentiation of progenitor cells into neurons at this stage was dependent on homophilic CHL1-CHL1 interactions. These observations indicate that homophilic CHL1 trans-interactions regulate differentiation of neuronal progenitor cells at early postnatal stages, while heterophilic trans-interactions of CHL1 with vitronectin, integrins, and the plasminogen activator system regulate neuritogenesis and neuronal cell migration at a later postnatal stage of cerebellar morphogenesis. Thus, within very narrow time windows in postnatal cerebellar development, distinct types of molecular interactions mediated by CHL1 underlie the diverse functions of this protein.


Assuntos
Moléculas de Adesão Celular/metabolismo , Movimento Celular/fisiologia , Integrinas/metabolismo , Neuritos/metabolismo , Inibidor 2 de Ativador de Plasminogênio/metabolismo , Vitronectina/metabolismo , Animais , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/farmacologia , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Cerebelo/citologia , Cerebelo/efeitos dos fármacos , Cerebelo/metabolismo , Camundongos , Camundongos Knockout , Neuritos/efeitos dos fármacos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo
14.
Protein J ; 33(3): 253-7, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24705831

RESUMO

A 55 kDa cruciferin protein has been purified and characterized from seeds of Moringa oleifera plant. Protein blast of N-terminal amino-acid sequence showed 60 % sequence similarity with cruciferin from Brassica napus. The M. oleifera protein has been crystallized applying the sitting drop method using 5 % polyethylene glycol 8,000, 38.5 % 3-methyl-1,5-pentanediol and 0.1 M sodium cacodylate pH 6.5. The crystals belonged to the P6322 hexagonal space group with cell dimensions, a = b = 98.4, c = 274.3 Å. Initial diffraction data have been collected to a resolution of 6 Å.


Assuntos
Cristalografia/métodos , Moringa oleifera/química , Proteínas de Armazenamento de Sementes/química , Sementes/química , Brassica napus
15.
PLoS One ; 9(2): e88518, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24533096

RESUMO

Local protein synthesis in dendrites enables neurons to selectively change the protein complement of individual postsynaptic sites. Though it is generally assumed that this mechanism requires tight translational control of dendritically transported mRNAs, it is unclear how translation of dendritic mRNAs is regulated. We have analyzed here translational control elements of the dendritically localized mRNA coding for the postsynaptic scaffold protein Shank1. In its 5' region, the human Shank1 mRNA exhibits two alternative translation initiation sites (AUG⁺¹ and AUG⁺²¹4), three canonical upstream open reading frames (uORFs1-3) and a high GC content. In reporter assays, fragments of the 5'UTR with high GC content inhibit translation, suggesting a contribution of secondary structures. uORF3 is most relevant to translation control as it overlaps with the first in frame start codon (AUG⁺¹), directing translation initiation to the second in frame start codon (AUG⁺²¹4). Surprisingly, our analysis points to an additional uORF initiated at a non-canonical ACG start codon. Mutation of this start site leads to an almost complete loss of translation initiation at AUG⁺¹, demonstrating that this unconventional uORF is required for Shank1 synthesis. Our data identify a novel mechanism whereby initiation at a non-canonical site allows for translation of the main Shank1 ORF despite a highly structured 5'UTR.


Assuntos
Dendritos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Regiões 5' não Traduzidas , Sequência de Aminoácidos , Animais , Sequência de Bases , Códon de Iniciação/metabolismo , Análise Mutacional de DNA , Deleção de Genes , Humanos , Camundongos , Dados de Sequência Molecular , Mutação , Proteínas do Tecido Nervoso/genética , Fases de Leitura Aberta , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Sítio de Iniciação de Transcrição
16.
PLoS One ; 9(2): e88529, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24523912

RESUMO

PSD-95/discs large/ZO-1 (PDZ) domain proteins integrate many G-protein coupled receptors (GPCRs) into membrane associated signalling complexes. Additional PDZ proteins are involved in intracellular receptor trafficking. We show that three PDZ proteins (SNX27, PIST and NHERF1/3) regulate the mouse somatostatin receptor subtype 5 (SSTR5). Whereas the PDZ ligand motif of SSTR5 is not necessary for plasma membrane targeting or internalization, it protects the SSTR5 from postendocytic degradation. Under conditions of lysosomal inhibition, recycling of the SSTR5 to the plasma membrane does not depend on the PDZ ligand. However, recycling of the wild type receptor carrying the PDZ binding motif depends on SNX27 which interacts and colocalizes with the receptor in endosomal compartments. PIST, implicated in lysosomal targeting of some membrane proteins, does not lead to degradation of the SSTR5. Instead, overexpressed PIST retains the SSTR5 at the Golgi. NHERF family members release SSTR5 from retention by PIST, allowing for plasma membrane insertion. Our data suggest that PDZ proteins act sequentially on the GPCR at different stages of its subcellular trafficking.


Assuntos
Proteínas de Transporte/metabolismo , Regulação da Expressão Gênica , Fosfoproteínas/metabolismo , Receptores de Somatostatina/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Nexinas de Classificação/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Motivos de Aminoácidos , Animais , Biotinilação , Membrana Celular/metabolismo , Endocitose , Endossomos/metabolismo , Complexo de Golgi/metabolismo , Proteínas da Matriz do Complexo de Golgi , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Ligantes , Camundongos , Domínios PDZ , Transporte Proteico
17.
J Proteomics ; 96: 300-13, 2014 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-24269351

RESUMO

We analysed the effects of all-trans retinoic acid (ATRA) on proliferation and changes in the global proteome of the nullipotent human embryonal carcinoma cell line 2102Ep and the pluripotent cell line NTERA2 cl.D1 (NT2). Differentially expressed proteins were assessed by 2D-PAGE and mass spectrometry, followed by verification and analysis of protein modifications of proteins of the retinoid pathway. We established a proteome map of the germ cell tumor (GCT) cell line NT2 showing neuronal differentiation under ATRA treatment for 7days. Using bioinformatic analyses, we identified functional groups of altered proteins and potentially involved pathways, of which changes to the organization of the cytoskeleton and anti-apoptotic effects were the most prominent. Changes observed in the expression of factors involved in the retinoid pathway under ATRA, namely an upregulation of CRBP and CRABP2, were also reflected in GCT tissues of different histologies, providing further insight into factors involved in the differentiation of these pluripotent tumors. BIOLOGICAL SIGNIFICANCE: Treatment of NT2 germ cell tumor cells with all-trans retinoic acid (ATRA) is a model to investigate differentiation. We analysed differentially expressed proteins by 2D-PAGE and mass spectrometry and provide a proteome map of NT2 cells under 7days of ATRA. By bioinformatic analyses, functional groups of proteins and involved pathways like changes to the cytoskeleton and anti-apoptotic effects were identified. Factors involved in the retinoid pathway, in particular upregulation of CRBP, CRABP1 and CRABP2, also showed differential expression in tumors with different histological subtypes, which provides insight into gene regulation under induced and spontaneous differentiation in germ cell tumors.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Embrionário/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas de Neoplasias/biossíntese , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteoma/biossíntese , Tretinoína/farmacologia , Carcinoma Embrionário/patologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Fatores de Tempo , Regulação para Cima/efeitos dos fármacos
18.
Proteomes ; 2(3): 303-322, 2014 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-28250383

RESUMO

Due to changing climate, flooding (waterlogged soils and submergence) becomes a major problem in agriculture and crop production. In the present study, the effect of waterlogging was investigated on peroxidases of maize (Zea mays L.) leaves. The plants showed typical adaptations to flooding stress, i.e., alterations in chlorophyll a/b ratios and increased basal shoot diameter. Seven peroxidase bands could be detected by first dimension modified SDS-PAGE and 10 bands by first dimension high resolution Clear Native Electrophoresis that altered in dependence on plant development and time of waterlogging. Native isoelectric focusing revealed three acidic to neutral and four alkaline guaiacol peroxidases that could be further separated by high resolution Clear Native Electrophorese in the second dimension. One neutral peroxidase (pI 7.0) appeared to be down-regulated within four hours after flooding, whereas alkaline peroxidases (pI 9.2, 8.0 and 7.8) were up-regulated after 28 or 52 h. Second dimensions revealed molecular masses of 133 kDa and 85 kDa for peroxidases at pI 8.0 and 7.8, respectively. Size exclusion chromatography revealed native molecular masses of 30-58 kDa for peroxidases identified as class III peroxidases and ascorbate peroxidases by mass spectrometry. Possible functions of these peroxidases in flooding stress will be discussed.

19.
J Immunol ; 192(3): 1209-19, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24363429

RESUMO

Many pathogenic microorganisms have evolved tactics to modulate host cell death or survival pathways for establishing infection. The enteropathogenic bacterium Yersinia enterocolitica deactivates TLR-induced signaling pathways, which triggers apoptosis in macrophages. In this article, we show that Yersinia-induced apoptosis of human macrophages involves caspase-dependent cleavage of the TLR adapter protein MyD88. MyD88 was also cleaved when apoptosis was mediated by overexpression of the Toll-IL-1R domain-containing adapter inducing IFN-ß in epithelial cells. The caspase-processing site was mapped to aspartate-135 in the central region of MyD88. MyD88 is consequently split by caspases in two fragments, one harboring the death domain and the other the Toll-IL-1R domain. Caspase-3 was identified as the protease that conferred the cleavage of MyD88 in in vitro caspase assays. In line with a broad role of caspase-3 in the execution of apoptosis, the processing of MyD88 was not restricted to Yersinia infection and to proapoptotic Toll-IL-1R domain-containing adapter inducing IFN-ß signaling, but was also triggered by staurosporine treatment. The cleavage of MyD88 therefore seems to be a common event in the advanced stages of apoptosis, when caspase-3 is active. We propose that the processing of MyD88 disrupts its scaffolding function and uncouples the activation of TLR and IL-1Rs from the initiation of proinflammatory signaling events. The disruption of MyD88 may consequently render dying cells less sensitive to proinflammatory stimuli in the execution phase of apoptosis. The cleavage of MyD88 could therefore be a means of conferring immunogenic tolerance to apoptotic cells to ensure silent, noninflammatory cell demise.


Assuntos
Apoptose/fisiologia , Interações Hospedeiro-Patógeno/fisiologia , Macrófagos/microbiologia , Fator 88 de Diferenciação Mieloide/fisiologia , Yersinia enterocolitica/fisiologia , Sequência de Aminoácidos , Animais , Caspase 3/metabolismo , Células Epiteliais/metabolismo , Células HEK293 , Humanos , Interferon beta/imunologia , Quinases Associadas a Receptores de Interleucina-1/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Macrófagos/imunologia , Glicoproteínas de Membrana/fisiologia , Camundongos , Dados de Sequência Molecular , Fator 88 de Diferenciação Mieloide/química , Fator 88 de Diferenciação Mieloide/deficiência , NF-kappa B/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Receptores de Interleucina-1/fisiologia , Proteínas Recombinantes de Fusão/imunologia , Alinhamento de Sequência , Especificidade da Espécie , Receptores Toll-Like/fisiologia
20.
PLoS One ; 8(4): e61299, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23585889

RESUMO

Dysregulation of the proteolytic processing of amyloid precursor protein by γ-secretase and the ensuing generation of amyloid-ß is associated with the pathogenesis of Alzheimer's disease. Thus, the identification of amyloid precursor protein binding proteins involved in regulating processing of amyloid precursor protein by the γ-secretase complex is essential for understanding the mechanisms underlying the molecular pathology of the disease. We identified calreticulin as novel amyloid precursor protein interaction partner that binds to the γ-secretase cleavage site within amyloid precursor protein and showed that this Ca(2+)- and N-glycan-independent interaction is mediated by amino acids 330-344 in the C-terminal C-domain of calreticulin. Co-immunoprecipitation confirmed that calreticulin is not only associated with amyloid precursor protein but also with the γ-secretase complex members presenilin and nicastrin. Calreticulin was detected at the cell surface by surface biotinylation of cells overexpressing amyloid precursor protein and was co-localized by immunostaining with amyloid precursor protein and presenilin at the cell surface of hippocampal neurons. The P-domain of calreticulin located between the N-terminal N-domain and the C-domain interacts with presenilin, the catalytic subunit of the γ-secretase complex. The P- and C-domains also interact with nicastrin, another functionally important subunit of this complex. Transfection of amyloid precursor protein overexpressing cells with full-length calreticulin leads to a decrease in amyloid-ß42 levels in culture supernatants, while transfection with the P-domain increases amyloid-ß40 levels. Similarly, application of the recombinant P- or C-domains and of a synthetic calreticulin peptide comprising amino acid 330-344 to amyloid precursor protein overexpressing cells result in elevated amyloid-ß40 and amyloid-ß42 levels, respectively. These findings indicate that the interaction of calreticulin with amyloid precursor protein and the γ-secretase complex regulates the proteolytic processing of amyloid precursor protein by the γ-secretase complex, pointing to calreticulin as a potential target for therapy in Alzheimer's disease.


Assuntos
Secretases da Proteína Precursora do Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Glicoproteínas de Membrana/genética , Presenilina-1/genética , Sequência de Aminoácidos , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Sítios de Ligação , Células CHO , Cricetinae , Regulação da Expressão Gênica , Hipocampo/citologia , Hipocampo/metabolismo , Humanos , Glicoproteínas de Membrana/metabolismo , Camundongos , Dados de Sequência Molecular , Neurônios/citologia , Neurônios/metabolismo , Fragmentos de Peptídeos/metabolismo , Presenilina-1/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Proteólise , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...