Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 11(2)2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33672233

RESUMO

Maine-Anjou × Angus cross-bred steers (n = 156 steers; initial body weight (BW) 366 ± 37.2 kg) were used in a 132 d finishing study conducted at the Ruminant Nutrition Center (RNC) in Brookings, SD. Steers were blocked by weight (n = 5 BW blocks) and randomly assigned to an implant and dietary treatment of a randomized complete block design with each pen containing seven to eight steers (n = 20 pens). Dietary treatments consisted of (1) 15% (CS15) or (2) 30% corn silage (CS30) where corn silage displaced corn grain in the diet. Steers received one of two implants (both from Zoetis, Parsippany, NJ) containing equal doses of trenbolone acetate (TBA) and estradiol benzoate (EB): (1) Synovex PLUS (non-coated implant; 200 mg TBA and 28 mg EB; PLUS) or (2) Synovex ONE Feedlot (coated implant; 200 mg TBA and 28 mg EB; ONE-F). Bunks were managed using a slick bunk approach, and all diets contained dry matter (DM) basis 33 mg/kg monensin sodium. All steers were offered ad libitum access to feed, and feeding occurred twice daily in equal portions. There was no interaction between the implant and dietary treatment for any variables measured (p ≥ 0.08). Carcass-adjusted basis final BW, average daily gain (ADG), and grain to feed (G:F) were increased (p ≤ 0.02) by 2.2%, 6.5%, and 7.2%, respectively, for CS15. Observed net energy (NE) and the ratio of observed-to-expected NE for maintenance and gain was not influenced (p ≥ 0.15) by silage inclusion treatment. Beef production per hectare was not impacted (p ≥ 0.13) by corn silage inclusion level. Fecal output was increased, and digestibility coefficients for dry matter, organic matter, and crude protein were decreased in CS30 (p ≤ 0.03). Dressing percent and hot carcass weight (HCW) were greater (p ≤ 0.02) in CS15. Implant type did not influence any traits measured (p ≥ 0.14) except for marbling. Marbling was decreased for PLUS (433 vs. 466 ± 17.5; p = 0.02) compared to ONE-F steers. Similar beef produced per hectare of crop land-based upon silage feeding level means producers can feed greater inclusions of corn silage to finishing cattle without impacting carcass quality or beef production; implanting with a coated implant had no detrimental effects to growth performance but increases marbling scores.

2.
Animals (Basel) ; 11(1)2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33419121

RESUMO

Continental crossbred beef heifers were used in a randomized complete block design experiment to evaluate the effects of replacement of dry-rolled corn with unprocessed rye on the finishing-phase growth performance and efficiency of dietary net energy (NE) use. Fifty-six heifers (433 ± 34.0 kg) were transported 241 km from a sale barn in North Central South Dakota to the Ruminant Nutrition Center in Brookings, SD. Heifers were blocked by weight grouping and allotted to treatment pens (n = 7 heifers/pen and 4 pens/treatment). Treatments included a finishing diet that contained 60% grain (diet dry matter basis) as dry-rolled corn (DRC) or unprocessed rye grain (RYE). On study day 14, all heifers were consuming the final diet and were implanted with 200 mg of trenbolone acetate and 28 mg of estradiol benzoate (Synovex-Plus, Zoetis, Parsippany, NJ, USA). The RYE heifers had decreased (p ≤ 0.01) final body weight, average daily gain, and gain efficiency; however, they tended (p = 0.08) to have a greater dry matter intake compared to DRC heifers. RYE heifers had decreased (p ≤ 0.01) observed dietary NE and decreased (p ≤ 0.01) observed-to-expected dietary NE ratio for maintenance and gain compared to DRC heifers. The dressing percentage, 12th rib fat thickness, ribeye area, and the distribution of yield and quality grades were not altered (p ≥ 0.12) by dietary treatment. The hot carcass weight, calculated yield grade, estimated empty body fat (EBF), and body weight at 28% EBF decreased (p ≤ 0.02) and retail yield increased (p = 0.01) in RYE compared to DRC heifers. These data indicate that unprocessed rye is a palatable feed ingredient for inclusion in finishing diets for beef cattle and that rye inclusion only minimally influences the carcass quality grade. The feeding value of unprocessed rye is considerably less (21.4%) than that of dry-rolled corn using current standards and approximately 91% of the NE value of processed rye (processing index = 78.8%). Rye grain fed as processed or unprocessed grain has an NE value that is less than 90% of that of dry-rolled corn.

3.
Transl Anim Sci ; 4(2): txaa026, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32705024

RESUMO

The influence of grass hay (GH) inclusion in replacement of corn silage in receiving diets on growth performance and dietary net energy (NE) utilization was evaluated in newly weaned beef steers (n = 162 Charolais-Red Angus cross steers; initial body weight [BW] = 278 ± 13.4 kg). Treatments were (DM basis): 1) 0% GH, 2) 10% GH, or 3) 20% GH inclusion in replacement of corn silage in receiving diets fed to newly weaned beef steers for 56 d. The study was conducted from October to December of 2019. Data were analyzed as randomized complete block design with pen serving as the experimental unit for all analyses. Increasing dietary inclusion of hay had no influence (P ≥ 0.11) on final BW, ADG, gain:feed or observed/expected dietary NEM and NEG, observed/expected dry matter intake (DMI), or observed/expected ADG. GH inclusion increased (linear effect, P = 0.01) DMI. Observed DMI for all treatments was approximately 15% to 17% less than anticipated based upon steer growth performance and tabular NE values. Evaluation of observed/expected ADG was 31% to 37% greater than expected for the steers in the present study. Particles less than 4 mm increased (linear effect, P = 0.01) and greater than 4 mm decreased (linear effect, P = 0.01) as GH replaced corn silage in the receiving diet. As the proportion of particles greater than 4 mm increased, cumulative ADG was decreased. These data indicate that GH should be considered in corn silage-based receiving diets to improve DMI. In high-risk calves, improved DMI could result in a lesser incidence of morbidity, although no morbidity was observed in any steers from the present study.

4.
F1000Res ; 9: 1085, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33953910

RESUMO

Background:  Differing fractions of a batch of feed, differing ingredient characteristics, and inadequate mix time can lead to non-uniformity within a mix of feed.  Methods: The experiment was designed as a 5 x 2 x 2 factorial arrangement with seven replications per simple treatment mean. Factors included: 1) batch fraction (BF; n = 5); 2) corn silage inclusion level (CSLVL; n = 2) 15% or 30% inclusion (dry matter basis); and 3) mixing duration (DR; n = 2) of 20 or 25 mixer revolutions. Data were analyzed as a completely randomized design using a binomial approach. The Penn State Particle Separator was used to separate fractions of the total mixed ration (TMR). Results: No interactions between BF, CSLVL, and DR were detected ( P ≥ 0.31) for any dependent variables. There was an increase ( P = 0.01) in retention on the 19 mm sieve from the first BF compared to the last BF. CSLVL altered ( P = 0.01) retention on the 19 mm sieve. Increasing DR from 20 to 25 revolutions had no appreciable influence ( P = 0.23) on particles greater than 19 mm.  CSLVL ( P = 0.01) and DR ( P = 0.01) altered particle retention on the 8 mm sieve. BF ( P = 0.01), CSLVL ( P = 0.01), and DR ( P = 0.02), influenced particle retention on the 4 mm sieve. CSLVL impacted ( P ≤ 0.01) particles remaining in the bottom pan and particles greater than 4 mm. BF ( P = 0.01) and CSLVL ( P = 0.01) altered particles greater than 8 mm. Conclusions: These data indicate that BF and CSLVL fed alters particle size distribution that in turn could alter dry matter intake, dietary net energy content, and influence daily gain. Mixing DR had no appreciable influence on particle size distribution of the TMR.


Assuntos
Silagem , Zea mays , Ração Animal/análise , Animais , Bovinos , Dieta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA