Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Remote Sens Earth Syst Sci ; 5(1-2): 1-13, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34250444

RESUMO

Marine business and resources play a major role in the economics and way of life in coastal West African countries. Such countries see great profitability from their marine resources while also facing challenges that come with a bordering sea. Despite this fact, there has been limited research into the optimal way for West African Coastal States to coexist with, and sustainably use their marine resources, a research deficit that is mainly due to a lack of infrastructure for in-situ work, lack of capacity development, and comprehensive datasets to undertake oceanographic research. The Coastal Ocean Environment Summer School in Ghana (COESSING; www.coessing.org) was developed to help meet some of these challenges. Each summer since 2015, ocean scientists (e.g., biologists, chemists, physicists, hydrologists) from the USA and Europe have collaborated with West African colleagues to lead a week-long intensive summer school in Accra, Ghana, alternating in location between the Regional Maritime University and the University of Ghana. The school receives in excess of 100 participants drawn from universities, government agencies, and the private sector organizations, mainly from Ghana and neighboring Liberia, Nigeria, Togo, and Benin, among others. The format of the school includes morning lectures, afternoon field trips, and hands-on laboratory exercises and one-on-one coaching of students. Important to the COESSING program is the satellite oceanography component which introduces participants to the extensive and often free, remotely sensed oceanographic datasets. Participants develop skills that allow them to access, process, and analyze these datasets in order to better understand regional oceanographic phenomena, such as upwelling, pollution, habitat characterization, sea level rise, and coastal erosion. Following the school, facilitators keep in touch with program participants, helping them acquire and analyze data for their studies, dissertations, and often graduate school applications, etc. In summary, schools such as COESSING are critical not only for science in the region but for the global ocean community as such training develops eager, bright minds while leading to improved regional observing and modeling strategies in severely under-sampled seas. Here, we describe a unique case in which satellite oceanography has led to such outcomes for countries bordering the Gulf of Guinea, West Africa.

2.
Proc Natl Acad Sci U S A ; 116(27): 13233-13238, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31213535

RESUMO

The overturning circulation of the global ocean is critically shaped by deep-ocean mixing, which transforms cold waters sinking at high latitudes into warmer, shallower waters. The effectiveness of mixing in driving this transformation is jointly set by two factors: the intensity of turbulence near topography and the rate at which well-mixed boundary waters are exchanged with the stratified ocean interior. Here, we use innovative observations of a major branch of the overturning circulation-an abyssal boundary current in the Southern Ocean-to identify a previously undocumented mixing mechanism, by which deep-ocean waters are efficiently laundered through intensified near-boundary turbulence and boundary-interior exchange. The linchpin of the mechanism is the generation of submesoscale dynamical instabilities by the flow of deep-ocean waters along a steep topographic boundary. As the conditions conducive to this mode of mixing are common to many abyssal boundary currents, our findings highlight an imperative for its representation in models of oceanic overturning.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...