Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Biochimie ; 94(7): 1533-43, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22266024

RESUMO

During protein synthesis, release of polypeptide from the ribosome occurs when an in frame termination codon is encountered. Contrary to sense codons, which are decoded by tRNAs, stop codons present in the A-site are recognized by proteins named class I release factors, leading to the release of newly synthesized proteins. Structures of these factors bound to termination ribosomal complexes have recently been obtained, and lead to a better understanding of stop codon recognition and its coordination with peptidyl-tRNA hydrolysis in bacteria. Release factors contain a universally conserved GGQ motif which interacts with the peptidyl-transferase centre to allow peptide release. The Gln side chain from this motif is methylated, a feature conserved from bacteria to man, suggesting an important biological role. However, methylation is catalysed by completely unrelated enzymes. The function of this motif and its post-translational modification will be discussed in the context of recent structural and functional studies.


Assuntos
Terminação Traducional da Cadeia Peptídica , Fatores de Terminação de Peptídeos/química , Fatores de Terminação de Peptídeos/metabolismo , Animais , Humanos , Metilação , tRNA Metiltransferases/metabolismo
3.
Nucleic Acids Res ; 39(14): 6249-59, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21478168

RESUMO

Methylation is a common modification encountered in DNA, RNA and proteins. It plays a central role in gene expression, protein function and mRNA translation. Prokaryotic and eukaryotic class I translation termination factors are methylated on the glutamine of the essential and universally conserved GGQ motif, in line with an important cellular role. In eukaryotes, this modification is performed by the Mtq2-Trm112 holoenzyme. Trm112 activates not only the Mtq2 catalytic subunit but also two other tRNA methyltransferases (Trm9 and Trm11). To understand the molecular mechanisms underlying methyltransferase activation by Trm112, we have determined the 3D structure of the Mtq2-Trm112 complex and mapped its active site. Using site-directed mutagenesis and in vivo functional experiments, we show that this structure can also serve as a model for the Trm9-Trm112 complex, supporting our hypothesis that Trm112 uses a common strategy to activate these three methyltransferases.


Assuntos
Proteínas Metiltransferases/química , Subunidades Proteicas/química , Domínio Catalítico , Cristalografia , Ativação Enzimática , Proteínas Fúngicas/química , Deleção de Genes , Modelos Moleculares , Mutagênese Sítio-Dirigida , Ligação Proteica , Biossíntese de Proteínas , Proteínas Metiltransferases/genética , Subunidades Proteicas/genética , S-Adenosilmetionina/química , Proteínas de Saccharomyces cerevisiae/genética , tRNA Metiltransferases/genética
4.
Mol Microbiol ; 71(1): 66-78, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19019162

RESUMO

Novel mutations in prfA, the gene for the polypeptide release factor RF1 of Escherichia coli, were isolated using a positive genetic screen based on the parD (kis, kid) toxin-antitoxin system. This original approach allowed the direct selection of mutants with altered translational termination efficiency at UAG codons. The isolated prfA mutants displayed a approximately 10-fold decrease in UAG termination efficiency with no significant changes in RF1 stability in vivo. All three mutations, G121S, G301S and R303H, were situated close to the nonsense codon recognition site in RF1:ribosome complexes. The prfA mutants displayed increased sensitivity to the RelE toxin encoded by the relBE system of E. coli, thus providing in vivo support for the functional interaction between RF1 and RelE. The prfA mutants also showed increased sensitivity to the Kid toxin. Since this toxin can cleave RNA in a ribosome-independent manner, this result was not anticipated and provided first evidence for the involvement of RF1 in the pathway of Kid toxicity. The sensitivity of the prfA mutants to RelE and Kid was restored to normal levels upon overproduction of the wild-type RF1 protein. We discuss these results and their utility for the design of novel antibacterial strategies in the light of the recently reported structure of ribosome-bound RF1.


Assuntos
Toxinas Bacterianas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Terminação Traducional da Cadeia Peptídica , Fatores de Terminação de Peptídeos/metabolismo , Códon de Terminação , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Teste de Complementação Genética , Mutagênese , Fatores de Terminação de Peptídeos/genética
5.
FEBS Lett ; 582(16): 2352-6, 2008 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-18539146

RESUMO

The ubiquitous tripeptide Gly-Gly-Gln in class 1 polypeptide release factors triggers polypeptide release on ribosomes. The Gln residue in both bacterial and yeast release factors is N5-methylated, despite their distinct evolutionary origin. Methylation of eRF1 in yeast is performed by the heterodimeric methyltransferase (MTase) Mtq2p/Trm112p, and requires eRF3 and GTP. Homologues of yeast Mtq2p and Trm112p are found in man, annotated as an N6-DNA-methyltransferase and of unknown function. Here we show that the human proteins methylate human and yeast eRF1.eRF3.GTP in vitro, and that the MTase catalytic subunit can complement the growth defect of yeast strains deleted for mtq2.


Assuntos
Metiltransferases/metabolismo , Fatores de Terminação de Peptídeos/metabolismo , Proteínas Metiltransferases/metabolismo , Sequência de Aminoácidos , Animais , Cromossomos Humanos Par 21 , Teste de Complementação Genética , Humanos , Metiltransferases/química , Metiltransferases/genética , Camundongos , Dados de Sequência Molecular , Proteínas Metiltransferases/química , Proteínas Metiltransferases/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos
6.
J Biol Chem ; 283(8): 4993-5003, 2008 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-18083710

RESUMO

Colicin D import into Escherichia coli requires an interaction via its TonB box with the energy transducer TonB. Colicin D cytotoxicity is inhibited by specific tonB mutations, but it is restored by suppressor mutations in the TonB box. Here we report that there is a second site of interaction between TonB and colicin D, which is dependent upon a 45-amino acid region, within the uncharacterized central domain of colicin D. In addition, the 8th amino acids of colicin D (a glycine) and colicin B (a valine), adjacent to their TonB boxes, are also required for TonB recognition, suggesting that high affinity complex formation involves multiple interactions between these colicins and TonB. The central domain also contributes to the formation of the immunity complex, as well as being essential for uptake and thus killing. Colicin D is normally secreted in association with the immunity protein, and this complex involves the following two interactions: a major interaction with the C-terminal tRNase domain and a second interaction involving the central domain of colicin D and, most probably, the alpha4 helix of ImmD, which is on the opposite side of ImmD compared with the major interface. In contrast, formation of the immunity complex with the processed cytotoxic domain, the form expected to be found in the cytoplasm after colicin D uptake, requires only the major interaction. Klebicin D has, like colicin D, a ribonuclease activity toward tRNAArg and a central domain, which can form a complex with ImmD but which does not function in TonB-mediated transport.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Ribonucleases/metabolismo , Bacteriocinas/genética , Bacteriocinas/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Membrana/genética , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína/fisiologia , Estrutura Terciária de Proteína/fisiologia , Transporte Proteico/fisiologia , RNA de Transferência de Arginina/genética , RNA de Transferência de Arginina/metabolismo , Ribonucleases/genética
7.
J Biol Chem ; 282(49): 35638-45, 2007 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-17932046

RESUMO

Bacterial release factors RF1 and RF2 are methylated on the Gln residue of a universally conserved tripeptide motif GGQ, which interacts with the peptidyl transferase center of the large ribosomal subunit, triggering hydrolysis of the ester bond in peptidyl-tRNA and releasing the newly synthesized polypeptide from the ribosome. In vitro experiments have shown that the activity of RF2 is stimulated by Gln methylation. The viability of Escherichia coli K12 strains depends on the integrity of the release factor methyltransferase PrmC, because K12 strains are partially deficient in RF2 activity due to the presence of a Thr residue at position 246 instead of Ala. Here, we study in vivo RF1 and RF2 activity at termination codons in competition with programmed frameshifting and the effect of the Ala-246 --> Thr mutation. PrmC inactivation reduces the specific termination activity of RF1 and RF2(Ala-246) by approximately 3- to 4-fold. The mutation Ala-246 --> Thr in RF2 reduces the termination activity in cells approximately 5-fold. After correction for the decrease in level of RF2 due to the autocontrol of RF2 synthesis, the mutation Ala-246 --> Thr reduced RF2 termination activity by approximately 10-fold at UGA codons and UAA codons. PrmC inactivation had no effect on cell growth in rich media but reduced growth considerably on poor carbon sources. This suggests that the expression of some genes needed for optimal growth under such conditions can become growth limiting as a result of inefficient translation termination.


Assuntos
Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/metabolismo , Terminação Traducional da Cadeia Peptídica/fisiologia , Fatores de Terminação de Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Aminoacil-RNA de Transferência/metabolismo , Motivos de Aminoácidos/fisiologia , Substituição de Aminoácidos , Códon de Terminação/genética , Códon de Terminação/metabolismo , Escherichia coli K12/genética , Proteínas de Escherichia coli/genética , Mudança da Fase de Leitura do Gene Ribossômico/fisiologia , Metilação , Mutação de Sentido Incorreto , Fatores de Terminação de Peptídeos/genética , Peptidil Transferases/genética , Peptidil Transferases/metabolismo , Proteínas Metiltransferases/genética , Proteínas Metiltransferases/metabolismo , Aminoacil-RNA de Transferência/genética , Subunidades Ribossômicas Maiores de Bactérias/genética , Subunidades Ribossômicas Maiores de Bactérias/metabolismo
8.
J Biol Chem ; 281(47): 36140-8, 2006 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-17008308

RESUMO

Protein release factor eRF1 in Saccharomyces cerevisiae, in complex with eRF3 and GTP, is methylated on a functionally crucial Gln residue by the S-adenosylmethionine-dependent methyltransferase Ydr140w. Here we show that eRF1 methylation, in addition to these previously characterized components, requires a 15-kDa zinc-binding protein, Ynr046w. Co-expression in Escherichia coli of Ynr046w and Ydr140w allows the latter to be recovered in soluble form rather than as inclusion bodies, and the two proteins co-purify on nickel-nitrilotriacetic acid chromatography when Ydr140w alone carries a His tag. The crystal structure of Ynr046w has been determined to 1.7 A resolution. It comprises a zinc-binding domain built from both the N- and C-terminal sequences and an inserted domain, absent from bacterial and archaeal orthologs of the protein, composed of three alpha-helices. The active methyltransferase is the heterodimer Ydr140w.Ynr046w, but when alone, both in solution and in crystals, Ynr046w appears to be a homodimer. The Ynr046w eRF1 methyltransferase subunit is shared by the tRNA methyltransferase Trm11p and probably by two other enzymes containing a Rossman fold.


Assuntos
Metiltransferases/fisiologia , Fatores de Terminação de Peptídeos/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Sequência de Aminoácidos , Animais , Escherichia coli/metabolismo , Glutamina/química , Humanos , Metiltransferases/metabolismo , Dados de Sequência Molecular , Níquel/química , Fatores de Terminação de Peptídeos/química , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Zinco/química , Dedos de Zinco , tRNA Metiltransferases
9.
Mol Cell ; 20(6): 917-27, 2005 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-16364916

RESUMO

Class I release factors bind to ribosomes in response to stop codons and trigger peptidyl-tRNA hydrolysis at the P site. Prokaryotic and eukaryotic RFs share one motif: a GGQ tripeptide positioned in a loop at the end of a stem region that interacts with the ribosomal peptidyl transferase center. The glutamine side chain of this motif is specifically methylated in both prokaryotes and eukaryotes. Methylation in E. coli is due to PrmC and results in strong stimulation of peptide chain release. We have solved the crystal structure of the complex between E. coli RF1 and PrmC bound to the methyl donor product AdoHCy. Both the GGQ domain (domain 3) and the central region (domains 2 and 4) of RF1 interact with PrmC. Structural and mutagenic data indicate a compact conformation of RF1 that is unlike its conformation when it is bound to the ribosome but is similar to the crystal structure of the protein alone.


Assuntos
Proteínas de Escherichia coli/química , Fatores de Terminação de Peptídeos/química , Conformação Proteica , Proteínas Metiltransferases/química , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Códon de Terminação , Cristalografia por Raios X , Análise Mutacional de DNA , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Metilação , Modelos Moleculares , Dados de Sequência Molecular , Complexos Multiproteicos , Fatores de Terminação de Peptídeos/genética , Fatores de Terminação de Peptídeos/metabolismo , Proteínas Metiltransferases/genética , Proteínas Metiltransferases/metabolismo , Alinhamento de Sequência
10.
Mol Cell ; 20(6): 929-38, 2005 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-16364917

RESUMO

Bacterial class I release factors (RFs) are seen by cryo-electron microscopy (cryo-EM) to span the distance between the ribosomal decoding and peptidyl transferase centers during translation termination. The compact conformation of bacterial RF1 and RF2 observed in crystal structures will not span this distance, and large structural rearrangements of RFs have been suggested to play an important role in termination. We have collected small-angle X-ray scattering (SAXS) data from E. coli RF1 and from a functionally active truncated RF1 derivative. Theoretical scattering curves, calculated from crystal and cryo-EM structures, were compared with the experimental data, and extensive analyses of alternative conformations were made. Low-resolution models were constructed ab initio, and by rigid-body refinement using RF1 domains. The SAXS data were compatible with the open cryo-EM conformation of ribosome bound RFs and incompatible with the crystal conformation. These conclusions obviate the need for assuming large conformational changes in RFs during termination.


Assuntos
Proteínas de Escherichia coli/química , Fatores de Terminação de Peptídeos/química , Conformação Proteica , Ribossomos/metabolismo , Microscopia Crioeletrônica , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Fatores de Terminação de Peptídeos/genética , Fatores de Terminação de Peptídeos/metabolismo , Ligação Proteica
11.
J Bacteriol ; 187(8): 2693-7, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15805515

RESUMO

The transfer RNase colicin D and ionophoric colicin B appropriate the outer membrane iron siderophore receptor FepA and share a common translocation requirement for the TonB pathway to cross the outer membrane. Despite the almost identical sequences of the N-terminal domains required for the translocation of colicins D and B, two spontaneous tonB mutations (Arg158Ser and Pro161Leu) completely abolished colicin D toxicity but did not affect either the sensitivity to other colicins or the FepA-dependent siderophore uptake capacity. The sensitivity to colicin D of both tonB mutants was fully restored by specific suppressor mutations in the TonB box of colicin D, at Ser18(Thr) and Met19(Ile), respectively. This demonstrates that the interaction of colicin D with TonB is critically dependent on certain residues close to position 160 in TonB and on the side chains of certain residues in the TonB box of colicin D. The effect of introducing the TonB boxes from other TonB-dependent receptors and colicins into colicins D and B was studied. The results of these and other changes in the two TonB boxes show that the role of residues at positions 18 and 19 in colicin D is strongly modulated by other nearby and/or distant residues and that the overall function of colicin D is much more dependent on the interaction with TonB involving the TonB box than is the function of colicin B.


Assuntos
Proteínas de Bactérias/metabolismo , Colicinas/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/fisiologia , Proteínas de Bactérias/fisiologia , Colicinas/química , Colicinas/genética , Mutação Puntual
12.
J Bacteriol ; 187(2): 507-11, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15629922

RESUMO

The gene prmC, encoding the putative S-adenosyl-L-methionine (AdoMet)-dependent methyltransferase (MTase) of release factors (RFs) of the obligate intracellular pathogen Chlamydia trachomatis, was functionally analyzed. Chlamydial PrmC expression suppresses the growth defect of a prmC knockout strain of Escherichia coli K-12, suggesting an interaction of chlamydial PrmC with E. coli RFs in vivo. In vivo methylation assays carried out with recombinant PrmC and RFs of chlamydial origin demonstrated that PrmC methylates RFs within the tryptic fragment containing the universally conserved sequence motif Gly-Gly-Gln. This is consistent with the enzymatic properties of PrmC of E. coli origin. We conclude that C. trachomatis PrmC functions as an N5-glutamine AdoMet-dependent MTase, involved in methylation of RFs.


Assuntos
Proteínas de Bactérias/metabolismo , Chlamydia trachomatis/enzimologia , Fatores de Terminação de Peptídeos/metabolismo , Proteínas Metiltransferases/metabolismo , Motivos de Aminoácidos , Sequência Conservada , DNA Bacteriano/química , DNA Bacteriano/isolamento & purificação , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Deleção de Genes , Teste de Complementação Genética , Metilação , Dados de Sequência Molecular , Análise de Sequência de DNA
13.
J Biol Chem ; 280(4): 2439-45, 2005 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-15509572

RESUMO

Polypeptide release factors from eubacteria and eukaryotes, although similar in function, belong to different protein families. They share one sequence motif, a GGQ tripeptide that is vital to release factor (RF) activity in both kingdoms. In bacteria, the Gln residue of the motif in RF1 and RF2 is modified to N(5)-methyl-Gln by the S-adenosyl l-methionine-dependent methyltransferase PrmC and the absence of Gln methylation decreases the release activity of Escherichia coli RF2 in vitro severalfold. We show here that the same modification is made to the GGQ motif of Saccharomyces cerevisiae release factor eRF1, the first time that N(5)-methyl-Gln has been found outside the bacterial kingdom. The product of the YDR140w gene is required for the methylation of eRF1 in vivo and for optimal yeast cell growth. YDR140w protein has significant homology to PrmC but lacks the N-terminal domain thought to be involved in the recognition of the bacterial release factors. Overproduced in S. cerevisiae, YDR140w can methylate eRF1 from yeast or man in vitro using S-adenosyl l-methionine as methyl donor provided that eRF3 and GTP are also present, suggesting that the natural substrate of the methyltransferase YDR140w is the ternary complex eRF1.eRF3.GTP.


Assuntos
Glutamina/química , Metiltransferases/fisiologia , Fatores de Terminação de Peptídeos/fisiologia , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Eletroforese em Gel de Poliacrilamida , Escherichia coli/metabolismo , Guanosina Trifosfato/metabolismo , Histidina/química , Espectrometria de Massas , Metilação , Metiltransferases/química , Modelos Moleculares , Dados de Sequência Molecular , Fatores de Terminação de Peptídeos/química , Plasmídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
14.
EMBO J ; 23(7): 1474-82, 2004 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-15014439

RESUMO

Colicins are toxins secreted by Escherichia coli in order to kill their competitors. Colicin D is a 75 kDa protein that consists of a translocation domain, a receptor-binding domain and a cytotoxic domain, which specifically cleaves the anticodon loop of all four tRNA(Arg) isoacceptors, thereby inactivating protein synthesis and leading to cell death. Here we report the 2.0 A resolution crystal structure of the complex between the toxic domain and its immunity protein ImmD. Neither component shows structural homology to known RNases or their inhibitors. In contrast to other characterized colicin nuclease-Imm complexes, the colicin D active site pocket is completely blocked by ImmD, which, by bringing a negatively charged cluster in opposition to a positively charged cluster on the surface of colicin D, appears to mimic the tRNA substrate backbone. Site-directed mutations affecting either the catalytic domain or the ImmD protein have led to the identification of the residues vital for catalytic activity and for the tight colicin D/ImmD interaction that inhibits colicin D toxicity and tRNase catalytic activity.


Assuntos
Colicinas/química , Proteínas de Escherichia coli/química , Estrutura Terciária de Proteína , RNA de Transferência/química , Ribonucleases/química , Sequência de Aminoácidos , Sítios de Ligação , Colicinas/imunologia , Cristalografia por Raios X , Escherichia coli , Proteínas de Escherichia coli/imunologia , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Complexos Multiproteicos , Mutagênese Sítio-Dirigida , RNA de Transferência/metabolismo , Ribonucleases/antagonistas & inibidores , Ribonucleases/metabolismo , Alinhamento de Sequência , Especificidade por Substrato
15.
Mol Microbiol ; 50(5): 1467-76, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14651631

RESUMO

Release factors RF1 and RF2 recognize stop codons present at the A-site of the ribosome and activate hydrolysis of peptidyl-tRNA to release the peptide chain. Interactions with RF3, a ribosome-dependent GTPase, then initiate a series of reactions that accelerate the dissociation of RF1 or RF2 and their recycling between ribosomes. Two regions of Escherichia coli RF1 and RF2 were identified previously as involved in stop codon recognition and peptidyl-tRNA hydrolysis. We show here that removing the N-terminal domain of RF1 or RF2 or exchanging this domain between the two factors does not affect RF specificity but has different effects on the activity of RF1 and RF2: truncated RF1 remains highly active and able to support rapid cell growth, whereas cells with truncated RF2 grow only poorly. Transplanting a loop of 13 amino acid residues from RF2 to RF1 switches the stop codon specificity. The interaction of the truncated factors with RF3 on the ribosome is defective: they fail to stimulate guanine nucleotide exchange on RF3, recycling is not stimulated by RF3, and nucleotide-free RF3 fails to stabilize the binding of RF1 or RF2 to the ribosome. However, the N-terminal domain seems not to be required for the expulsion of RF1 or RF2 by RF3:GTP.


Assuntos
Códon de Terminação/metabolismo , Proteínas de Escherichia coli , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Fatores de Terminação de Peptídeos/metabolismo , Sequência de Aminoácidos , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Fatores de Terminação de Peptídeos/química , Fatores de Terminação de Peptídeos/genética , Aminoacil-RNA de Transferência/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Ribossomos/metabolismo
16.
Mol Microbiol ; 47(1): 267-75, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12492870

RESUMO

Release factors RF1 and RF2 are required in bacteria for the cleavage of peptidyl-tRNA. A single sequence motif, GGQ, is conserved in all eubacterial, archaebacterial and eukaryotic release factors and may mimic the CCA end of tRNA, although the position of the motif in the crystal structures of human eRF1 and Escherichia coli RF2 is strikingly different. Mutations have been introduced at each of the three conserved positions. Changing the Gln residue to Ala or Glu allowed the factors to retain about 22% of tetrapeptide release activity in vitro, but these mutants could not complement thermosensitive RF mutants in vivo. None of several mutants with altered Gly residues retained activity in vivo or in vitro. Many GGQ mutants were poorly expressed and are presumably unstable; many were also toxic to the cell. The toxic mutant factors or their degradation products may bind to ribosomes inhibiting the action of the normal factor. These data are consistent with a common role for the GGQ motif in bacterial and eukaryotic release factors, despite strong divergence in primary, secondary and tertiary structure, but are difficult to reconcile with the hypothesis that the amide nitrogen of the Gln plays a vital role in peptidyl-tRNA hydrolysis.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli , Fatores de Terminação de Peptídeos/metabolismo , Proteínas de Bactérias/genética , Western Blotting , Sequência Conservada , Escherichia coli/genética , Escherichia coli/metabolismo , Terminação Traducional da Cadeia Peptídica , Fatores de Terminação de Peptídeos/antagonistas & inibidores , Fatores de Terminação de Peptídeos/genética , Transativadores/metabolismo
17.
Mol Cell ; 10(4): 789-98, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12419223

RESUMO

E. coli mutants of RF1 and RF2, in which the universal GGQ motif is changed to GAQ, are slow in peptide release from ribosomes. Other kinetic properties are unchanged, suggesting that the GGQ motif is in contact with the peptidyl-transferase center. Deacylated tRNA terminates protein synthesis codon specifically, indicating that the CCA end of tRNA and the GGQ motif operate similarly. Addition of a mutant factor to a pretermination ribosomal complex stimulates exchange of RF3-bound GDP with free GDP, but binding of GTP to RF3 and GTP hydrolysis requires peptide chain release. Therefore, the sequence of steps during termination of translation is regulated by removal of the polypeptide, an event that might trigger a conformational change in the ribosome.


Assuntos
Proteínas de Escherichia coli , Escherichia coli/genética , GTP Fosfo-Hidrolases/metabolismo , Fatores de Terminação de Peptídeos/química , Fatores de Terminação de Peptídeos/metabolismo , Biossíntese de Proteínas , Motivos de Aminoácidos , Sequência de Aminoácidos , Sítios de Ligação , Catálise , Códon de Terminação , Regulação Bacteriana da Expressão Gênica , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Hidrólise , Cinética , Mutação , Fatores de Terminação de Peptídeos/genética , Ligação Proteica , RNA de Transferência/metabolismo , Ribossomos/química , Ribossomos/metabolismo
18.
Biochimie ; 84(5-6): 423-32, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12423785

RESUMO

A major group of colicins comprises molecules that possess nuclease activity and kill sensitive cells by cleaving RNA or DNA. Recent data open the possibility that the tRNase colicin D, the rRNase colicin E3 and the DNase colicin E7 undergo proteolytic processing, such that only the C-terminal domain of the molecule, carrying the nuclease activity, enters the cytoplasm. The proteases responsible for the proteolytic processing remain unidentified. In the case of colicin D, the characterization of a colicin D-resistant mutant shows that the inner membrane protease LepB is involved in colicin D toxicity, but is not solely responsible for the cleavage of colicin D. The lepB mutant resistant to colicin D remains sensitive to other colicins tested (B, E1, E3 and E2), and the mutant protease retains activity towards its normal substrates. The cleavage of colicin D observed in vitro releases a C-terminal fragment retaining tRNase activity, and occurs in a region of the amino acid sequence that is conserved in other nuclease colicins, suggesting that they may also require a processing step for their cytotoxicity. The immunity proteins of both colicins D and E3 appear to have a dual role, protecting the colicin molecule against proteolytic cleavage and inhibiting the nuclease activity of the colicin. The possibility that processing is an essential step common to cell killing by all nuclease colicins, and that the immunity protein must be removed from the colicin prior to processing, is discussed.


Assuntos
Proteínas de Bactérias/metabolismo , Colicinas/metabolismo , Proteínas de Escherichia coli , Escherichia coli/metabolismo , Proteínas de Membrana , Peptídeo Hidrolases/metabolismo , Sequência de Aminoácidos , Colicinas/antagonistas & inibidores , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Transporte Proteico/fisiologia , Alinhamento de Sequência , Serina Endopeptidases/metabolismo
19.
Mol Microbiol ; 45(1): 123-9, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12100553

RESUMO

Peptidyl-tRNA hydrolase in Escherichia coli, encoded by pth, is essential for recycling tRNA molecules sequestered as peptidyl-tRNA as a result of pre-mature dissociation from the ribosome during translation. Genes homologous to pth are present in other bacteria, yeast and man, but not in archaea. The homologous gene in Bacillus subtilis, spoVC, was first identified as a gene involved in sporulation. A second copy of spoVC, under the control of the xyl promoter, was integrated into B. subtilis at the amy locus. In this background, interruption of the original gene was possible provided that expression of the copy at the amy locus was induced. When spoVC was interrupted, both vegetative growth and sporulation were dependent on xylose, showing that SpoVC is essential. The role of SpoVC in sporulation is discussed and appears to be consistent with previous hypotheses that a relaxation of translational accuracy may occur during sporulation. The homologous gene in Saccharomyces cerevisiae, yHR189W, has been interrupted in both haploid and diploid strains. The mutant haploid strains remain viable, as do the yHR189W mutant spores obtained by tetrad dis-section, with either glucose or glycerol as carbon source, showing that the yHR189W gene product is dispensable for cell growth and for mitochondrial respiration.


Assuntos
Bacillus subtilis/enzimologia , Bacillus subtilis/fisiologia , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Saccharomyces cerevisiae/enzimologia , Bacillus subtilis/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Genes Bacterianos , Genes Essenciais , Teste de Complementação Genética , Mutação , Aminoacil-RNA de Transferência/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/fisiologia , Esporos Bacterianos/fisiologia
20.
EMBO J ; 21(4): 769-78, 2002 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-11847124

RESUMO

Class 1 peptide release factors (RFs) in Escherichia coli are N(5)-methylated on the glutamine residue of the universally conserved GGQ motif. One other protein alone has been shown to contain N(5)-methylglutamine: E.coli ribosomal protein L3. We identify the L3 methyltransferase as YfcB and show that it methylates ribosomes from a yfcB strain in vitro, but not RF1 or RF2. HemK, a close orthologue of YfcB, is shown to methylate RF1 and RF2 in vitro. hemK is immediately downstream of and co-expressed with prfA. Its deletion in E.coli K12 leads to very poor growth on rich media and abolishes methylation of RF1. The activity of unmethylated RF2 from K12 strains is extremely low due to the cumulative effects of threonine at position 246, in place of alanine or serine present in all other bacterial RFs, and the lack of N(5)-methylation of Gln252. Fast-growing spontaneous revertants in hemK K12 strains contain the mutations Thr246Ala or Thr246Ser in RF2. HemK and YfcB are the first identified methyltransferases modifying glutamine, and are widely distributed in nature.


Assuntos
Proteínas de Escherichia coli/genética , Escherichia coli/genética , Genes Bacterianos , Proteínas Metiltransferases/genética , Sequência de Aminoácidos , Escherichia coli/crescimento & desenvolvimento , Metilação , Dados de Sequência Molecular , Peptídeos/metabolismo , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...