Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Vis ; 23(11): 39, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37733539

RESUMO

Pre-saccadic attention has been related to enhanced neural responses before saccades made into a neuron's receptive field in macaque visual cortex (Moore and Chang 2009). However, much remains unknown about the underlying circuit mechanisms. Using the marmoset, a small New World monkey with a smooth brain, we examined laminar and cell class distinctions during pre-saccadic attention in motion selective areas MT/MTC. In a saccade foraging task, marmosets made a saccade from a central fixation point to one of three equally eccentric random dot field stimuli. We positioned the stimuli such that one foraged location overlapped the receptive fields of neurons under study and examined how tuning functions for motion direction changed. Tuning curves were fit with an adjusted Von Mises curve that estimates baseline, gain, and tuning width. We found in two animals that neurons on average exhibited increases in baseline and gain with pre-saccadic attention, but no changes in tuning width. In a single animal we were able to dissect the population by cell class and layer. We found that increases in gain were predominantly among broad spiking neurons in superficial layers whereas additive increases in rate were shared across layers and cell types. This suggests that superficial layer broad spiking neurons, the putative projection neurons that would relay information to downstream cortical areas, have a privileged role for encoding enhanced motion sensitivity during pre-saccadic attention.


Assuntos
Callithrix , Movimentos Sacádicos , Animais , Neurônios , Encéfalo , Macaca
2.
J Vis Exp ; (198)2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37590508

RESUMO

The marmoset monkey provides an ideal model for examining laminar cortical circuits due to its smooth cortical surface, which facilitates recordings with linear arrays. The marmoset has recently grown in popularity due to its similar neural functional organization to other primates and its technical advantages for recording and imaging. However, neurophysiology in this model poses some unique challenges due to the small size and lack of gyri as anatomical landmarks. Using custom-built micro-drives, researchers can manipulate linear array placement to sub-millimeter precision and reliably record at the same retinotopically targeted location across recording days. This protocol describes the step-by-step construction of the micro-drive positioning system and the neurophysiological recording technique with silicon linear electrode arrays. With precise control of electrode placement across recording sessions, researchers can easily traverse the cortex to identify areas of interest based on their retinotopic organization and the tuning properties of the recorded neurons. Further, using this laminar array electrode system, it is possible to apply a current source density analysis (CSD) to determine the recording depth of individual neurons. This protocol also demonstrates examples of laminar recordings, including spike waveforms isolated in Kilosort, which span multiple channels on the arrays.


Assuntos
Callithrix , Eletrofisiologia Cardíaca , Animais , Cultura , Eletrodos , Neurônios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...