Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Drug Metab Dispos ; 46(9): 1285-1303, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29959133

RESUMO

The Innovation and Quality Induction Working Group presents an assessment of best practice for data interpretation of in vitro induction, specifically, response thresholds, variability, application of controls, and translation to clinical risk assessment with focus on CYP3A4 mRNA. Single concentration control data and Emax/EC50 data for prototypical CYP3A4 inducers were compiled from many human hepatocyte donors in different laboratories. Clinical CYP3A induction and in vitro data were gathered for 51 compounds, 16 of which were proprietary. A large degree of variability was observed in both the clinical and in vitro induction responses; however, analysis confirmed in vitro data are able to predict clinical induction risk. Following extensive examination of this large data set, the following recommendations are proposed. a) Cytochrome P450 induction should continue to be evaluated in three separate human donors in vitro. b) In light of empirically divergent responses in rifampicin control and most test inducers, normalization of data to percent positive control appears to be of limited benefit. c) With concentration dependence, 2-fold induction is an acceptable threshold for positive identification of in vitro CYP3A4 mRNA induction. d) To reduce the risk of false positives, in the absence of a concentration-dependent response, induction ≥ 2-fold should be observed in more than one donor to classify a compound as an in vitro inducer. e) If qualifying a compound as negative for CYP3A4 mRNA induction, the magnitude of maximal rifampicin response in that donor should be ≥ 10-fold. f) Inclusion of a negative control adds no value beyond that of the vehicle control.


Assuntos
Indutores do Citocromo P-450 CYP3A/metabolismo , Citocromo P-450 CYP3A/metabolismo , Controle de Medicamentos e Entorpecentes , Invenções/normas , Controle de Qualidade , RNA Mensageiro/metabolismo , Indutores do Citocromo P-450 CYP3A/farmacologia , Interações Medicamentosas/fisiologia , Flumazenil/metabolismo , Flumazenil/farmacologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Rifampina/metabolismo , Rifampina/farmacologia
2.
Drug Metab Dispos ; 46(8): 1066-1074, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29735754

RESUMO

Oligonucleotides represent an expanding class of pharmacotherapeutics in development for various indications. Typically, oligonucleotides are developed with phosphorothioate linkages for the improvement of biologic stability; however, limited data are available on the potential of these molecules to cause drug-drug interactions (DDIs). In this study, four nontherapeutic oligonucleotides with either a phosphodiester or phosphorothioate linkage and partial sequences towards glutathione peroxidase or ß-actin (PD-GP and PD-Ac or PT-GP and PT-Ac, respectively) were evaluated in vitro for their potential to inhibit cytochrome P450 (P450) enzymes and UGP-glucuronosyltransferases (UGTs) in both human liver microsomes (HLMs) and cryopreserved human hepatocytes (CHHs) and to inhibit select transporters in expression systems. PD-GP and PD-Ac had little to no inhibitory effect on any P450 or UGT enzymes in HLMs and CHHs, except for PD-Ac in HLMs for CYP2C19 (IC50 = 29 µM). Conversely, PT-GP and PT-Ac caused direct inhibition of almost all P450 and UGT enzymes, with CYP1A2 (IC50 values of 0.8-4.2 µM), CYP2C8 (IC50 values of 1.1-12 µM), and UGT1A1 (IC50 values of 4.5-5.4 µM) inhibited to the greatest extent. There was evidence of possible time-dependent inhibition (TDI) of P450 enzymes with PT-GP and PT-Ac for CYP2B6, CYP2C8, CYP2C19, CYP2C9, CYP2D6, and CYP3A4/5; however, this TDI was reversible. In contrast to HLMs, there was little to no direct P450 inhibition by any oligonucleotide in CHHs [except for PD-Ac with CYP2C19 (IC50 = 36 µM) and TDI by PT-GP with CYP2C8], demonstrating test system-dependent outcomes. Inhibition was observed for the organic anion uptake transporters, including organic anion-transporting polypeptide OATP1B1 and OATP1B3, organic anion transporters OAT1 and OAT3, and organic cation transporter OCT2 (IC50 values of 12-29 µM), but not OCT1 or the efflux transporters breast cancer resistance protein and P-glycoprotein by the phosphorothioate oligonucleotides.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Glucuronosiltransferase/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Oligonucleotídeos Fosforotioatos/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Transporte Biológico/fisiologia , Células CACO-2 , Linhagem Celular Tumoral , Cães , Células HEK293 , Humanos , Células Madin Darby de Rim Canino
3.
Drug Metab Dispos ; 44(3): 453-9, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26668209

RESUMO

Ketoconazole is a potent CYP3A4/5 inhibitor and, until recently, recommended by the Food and Drug Administration (FDA) and the European Medicines Agency as a strong CYP3A4/5 inhibitor in clinical drug-drug interaction (DDI) studies. Ketoconazole sporadically causes liver injury or adrenal insufficiency. Because of this, the FDA and European Medicines Agency recommended suspension of ketoconazole use in DDI studies in 2013. The FDA specifically recommended use of clarithromycin or itraconazole as alternative strong CYP3A4/5 inhibitors in clinical DDI studies, but many investigators have also used ritonavir as an alternative. Although the effects of these clinical CYP3A4/5 inhibitors on other CYPs are largely established, reports on the effects on the broad range of drug transporter activities are sparse. In this study, the inhibitory effects of ketoconazole, clarithromycin, ritonavir, and itraconazole (and its CYP3A4-inhibitory metabolites, hydroxy-, keto-, and N-desalkyl itraconazole) toward 13 drug transporters (OATP1B1, OATP1B3, OAT1, OAT3, OCT1, OCT2, MATE1, MATE2-K, P-gp, BCRP, MRP2, MRP3, and BSEP) were systematically assessed in transporter-expressing HEK-293 cell lines or membrane vesicles. In vitro findings were translated into clinical context with the basic static model approaches outlined by the FDA in its 2012 draft guidance on DDIs. The results indicate that, like ketoconazole, the alternative clinical CYP3A4/5 inhibitors ritonavir, clarithromycin, and itraconazole each have unique transporter inhibition profiles. None of the alternatives to ketoconazole provided a clean inhibition profile toward the 13 drug transporters evaluated. The results provide guidance for the selection of clinical CYP3A4/5 inhibitors when transporters are potentially involved in a victim drug's pharmacokinetics.


Assuntos
Claritromicina/metabolismo , Inibidores do Citocromo P-450 CYP3A/metabolismo , Itraconazol/metabolismo , Cetoconazol/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Ritonavir/metabolismo , Transporte Biológico/fisiologia , Linhagem Celular , Interações Medicamentosas/fisiologia , Células HEK293 , Humanos
4.
Drug Metab Dispos ; 43(11): 1744-50, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26354951

RESUMO

In the present study, we conducted a retrospective analysis of 343 in vitro experiments to ascertain whether observed (experimentally determined) values of Ki for reversible cytochrome P450 (P450) inhibition could be reliably predicted by dividing the corresponding IC50 values by two, based on the relationship (for competitive inhibition) in which Ki = IC50/2 when [S] (substrate concentration) = Km (Michaelis-Menten constant). Values of Ki and IC50 were determined under the following conditions: 1) the concentration of P450 marker substrate, [S], was equal to Km (for IC50 determinations) and spanned Km (for Ki determinations); 2) the substrate incubation time was short (5 minutes) to minimize metabolism-dependent inhibition and inhibitor depletion; and 3) the concentration of human liver microsomes was low (0.1 mg/ml or less) to maximize the unbound fraction of inhibitor. Under these conditions, predicted Ki values, based on IC50/2, correlated strongly with experimentally observed Ki determinations [r = 0.940; average fold error (AFE) = 1.10]. Of the 343 predicted Ki values, 316 (92%) were within a factor of 2 of the experimentally determined Ki values, and only one value fell outside a 3-fold range. In the case of noncompetitive inhibitors, Ki values predicted from IC50/2 values were overestimated by a factor of nearly 2 (AFE = 1.85; n = 13), which is to be expected because, for noncompetitive inhibition, Ki = IC50 (not IC50/2). The results suggest that, under appropriate experimental conditions with the substrate concentration equal to Km, values of Ki for direct, reversible inhibition can be reliably estimated from values of IC50/2.


Assuntos
Inibidores das Enzimas do Citocromo P-450/metabolismo , Inibidores das Enzimas do Citocromo P-450/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Concentração Inibidora 50 , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/enzimologia , Feminino , Humanos , Masculino , Reprodutibilidade dos Testes , Estudos Retrospectivos
5.
Drug Metab Dispos ; 43(1): 42-52, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25326287

RESUMO

Like most infections and certain inflammatory diseases, some therapeutic proteins cause a cytokine-mediated suppression of hepatic drug-metabolizing enzymes, which may lead to pharmacokinetic interactions with small-molecule drugs. We propose a new in vitro method to evaluate the whole blood-mediated effects of therapeutic proteins on drug-metabolizing enzymes in human hepatocytes cocultured with Kupffer cells. The traditional method involves treating hepatocyte cocultures with the therapeutic protein, which detects hepatocyte- and macrophage-mediated suppression of cytochrome P450 (P450). The new method involves treating whole human blood with a therapeutic protein to stimulate the release of cytokines from peripheral blood mononuclear cells (PBMCs), after which plasma is prepared and added to the hepatocyte coculture to evaluate P450 enzyme expression. In this study, human blood was treated for 24 hours at 37°C with bacterial lipopolysaccharide (LPS) or ANC28.1, an antibody against human T-cell receptor CD28. Cytokines were measured in plasma by sandwich immunoassay with electrochemiluminescense detection. Treatment of human hepatocyte cocultures with LPS or with plasma from LPS-treated blood markedly reduced the expression of CYP1A2, CYP2B6, and CYP3A4. However, treatment of hepatocyte cocultures with ANC28.1 did not suppress P450 expression, but treatment with plasma from ANC28.1-treated blood suppressed CYP1A2, CYP2B6, and CYP3A4 activity and mRNA levels. The results demonstrated that applying plasma from human blood treated with a therapeutic protein to hepatocytes cocultured with Kupffer cells is a suitable method to identify those therapeutic proteins that suppress P450 expression by an indirect mechanism-namely, the release of cytokines from PBMCs.


Assuntos
Anticorpos Monoclonais/farmacologia , Antígenos CD28/metabolismo , Citocromo P-450 CYP1A2/metabolismo , Citocinas/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Adolescente , Adulto , Idoso , Técnicas de Cocultura , Citocromo P-450 CYP2B6/metabolismo , Citocromo P-450 CYP3A/metabolismo , Feminino , Humanos , Células de Kupffer/efeitos dos fármacos , Células de Kupffer/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Lipopolissacarídeos/farmacologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Adulto Jovem
6.
Xenobiotica ; 44(7): 606-14, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24405273

RESUMO

1. Rose bengal (4,5,6,7-tetrachloro-2',4',5',7'-tetraiodofluorescein) is being developed for the treatment of cutaneous melanoma and hepatocellular carcinoma. Interestingly, rose bengal can generate singlet oxygen species upon exposure to light. 2. We evaluated rose bengal as an in vitro inhibitor of cytochrome P450 (CYP) or UDP-glucuronosyltransferase (UGT) enzymes in both human liver microsomes (HLM) and cryopreserved human hepatocytes (CHHs) under both yellow light and dark conditions. 3. Rose bengal directly inhibited CYP3A4/5 and UGT1A6 in HLM under yellow light with inhibitor concentration that causes 50% inhibition (IC50) values of 0.072 and 0.035 µM, respectively; whereas much less inhibition was observed in the dark with the IC50 values increasing 43- and 120-fold, respectively. To determine if a more physiologically-relevant test system could be protected from such an effect, rose bengal was evaluated as an inhibitor of CYP1A2, 2B6, 2C8, 2C9, 2C19, 2D6, 3A4/5 and UGT enzymes in CHH. All IC50 values were similar (64 ± 8 µM) and little to no effect of light on inhibitory potential was observed. 4. Given the IC50 values in CHH increased an order of magnitude compared to HLM and the atypical pharmacokinetics of the drug, the risk of rose bengal to cause clinically relevant drug-drug interactions is likely low, particularly when administered to cancer patients on an intermittent schedule.


Assuntos
Inibidores das Enzimas do Citocromo P-450/farmacologia , Glucuronosiltransferase/antagonistas & inibidores , Microssomos Hepáticos/enzimologia , Rosa Bengala/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Criopreservação , Citocromo P-450 CYP3A/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Interações Medicamentosas , Feminino , Glucuronosiltransferase/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Concentração Inibidora 50 , Luz , Masculino , Microssomos Hepáticos/efeitos dos fármacos
7.
Bioanalysis ; 5(10): 1211-28, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23721444

RESUMO

BACKGROUND: The utility of high-resolution MS (HRMS) with post-acquisition data mining in DMPK goes much further than the now established approach to simultaneously acquire quantitative and qualitative information for lead compounds at the discovery stage. Indeed, HRMS has promise for addressing multiple complex drug-development applications in a single experiment. In the present study, one HRMS dataset acquired for in vitro incubations of the model compound dasatinib was mined post-acquisition to address four different issues: stability, metabolite profiling, glutathione conjugate analysis, and endogenous lipid profiling. RESULTS & CONCLUSION: The derived results demonstrated that HRMS has potential for generating high information content datasets that can be stored and mined as needed to answer numerous complex development-stage questions without the need for additional sample generation or analysis.


Assuntos
Biomarcadores/análise , Mineração de Dados , Lipídeos/análise , Espectrometria de Massas/estatística & dados numéricos , Metabolômica , Microssomos Hepáticos/efeitos dos fármacos , Pirimidinas/análise , Tiazóis/análise , Dasatinibe , Glutationa/metabolismo , Humanos , Microssomos Hepáticos/metabolismo , Pirimidinas/farmacologia , Tiazóis/farmacologia
8.
Drug Metab Dispos ; 41(5): 1148-55, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23462698

RESUMO

Unsafe use of alcohol results in approximately 2.5 million deaths worldwide, with cirrhosis contributing to 16.6% of reported deaths. Serum insulin levels are often elevated in alcoholism and may result in diabetes, which is why alcoholic liver disease and diabetes often are present together. Because there is a sizable population with these diseases alone or in combination, the purpose of this study was to determine whether transporter expression in human liver is affected by alcoholic cirrhosis, diabetes, and alcoholic cirrhosis coexisting with diabetes. Transporters aid in hepatobiliary excretion of many drugs and toxic chemicals and can be determinants of drug-induced liver injury. Drug transporter expression and transcription factor-relative mRNA and protein expression in normal, diabetic, cirrhotic, and cirrhosis with diabetes human livers were quantified. Cirrhosis significantly increased ABCC4, 5, ABCG2, and solute carrier organic anion (SLCO) 2B1 mRNA expression and decreased SLCO1B3 mRNA expression in the liver. ABCC1, 3-5, and ABCG2 protein expression was also upregulated by alcoholic cirrhosis. ABCC3-5 and ABCG2 protein expression was also upregulated in diabetic cirrhosis. Cirrhosis increased nuclear factor E2-related factor 2 mRNA expression, whereas it decreased pregnane-X-receptor and farnesoid-X-receptor mRNA expression in comparison with normal livers. Hierarchical cluster analysis indicated that expressions of ABCC2, 3, and 6; SLCO1B1 and 1B3; and ABCC4 and 5 were more closely related in the livers from this cohort. Overall, alcoholic cirrhosis altered transporter expression in human liver.


Assuntos
Cirrose Hepática Alcoólica/metabolismo , Fígado/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Preparações Farmacêuticas/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Análise por Conglomerados , Glutationa Peroxidase/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteína 2 Associada à Farmacorresistência Múltipla , NAD(P)H Desidrogenase (Quinona)/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , RNA Mensageiro/genética , Fatores de Transcrição/genética
9.
Drug Metab Dispos ; 41(4): 897-905, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23378628

RESUMO

Lipophilic (logP > 1) and amphiphilic drugs (also known as cationic amphiphilic drugs) with ionizable amines (pKa > 6) can accumulate in lysosomes, a process known as lysosomal trapping. This process contributes to presystemic extraction by lysosome-rich organs (such as liver and lung), which, together with the binding of lipophilic amines to phospholipids, contributes to the large volume of distribution characteristic of numerous cardiovascular and central nervous system drugs. Accumulation of lipophilic amines in lysosomes has been implicated as a cause of phospholipidosis. Furthermore, elevated levels of lipophilic amines in lysosomes can lead to high organ-to-blood ratios of drugs that can be mistaken for active drug transport. In the present study, we describe an in vitro fluorescence-based method (using the lysosome-specific probe LysoTracker Red) to identify lysosomotropic agents in immortalized hepatocytes (Fa2N-4 cells). A diverse set of compounds with various physicochemical properties were tested, such as acids, bases, and zwitterions. In addition, the partitioning of the nonlysosomotropic atorvastatin (an anion) and the lysosomotropics propranolol and imipramine (cations) were quantified in Fa2N-4 cells in the presence or absence of various lysosomotropic or nonlysosomotropic agents and inhibitors of lysosomal sequestration (NH4Cl, nigericin, and monensin). Cellular partitioning of propranolol and imipramine was markedly reduced (by at least 40%) by NH4Cl, nigericin, or monensin. Lysosomotropic drugs also inhibited the partitioning of propranolol by at least 50%, with imipramine partitioning affected to a lesser degree. This study demonstrates the usefulness of immortalized hepatocytes (Fa2N-4 cells) for determining the lysosomal sequestration of lipophilic amines.


Assuntos
Hepatócitos/metabolismo , Ácidos Heptanoicos/farmacocinética , Imipramina/farmacocinética , Lisossomos/metabolismo , Propranolol/farmacocinética , Pirróis/farmacocinética , Antagonistas Adrenérgicos beta/farmacocinética , Aminas/metabolismo , Cloreto de Amônio/farmacologia , Antidepressivos Tricíclicos/farmacocinética , Atorvastatina , Linhagem Celular Transformada , Diuréticos/farmacocinética , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacocinética , Monensin/farmacologia , Nigericina/farmacologia
10.
Drug Metab Dispos ; 41(5): 1012-22, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23404373

RESUMO

Metabolism-dependent inhibition (MDI) of cytochrome P450 (P450) enzymes has the potential to cause clinically relevant drug-drug interactions. In the case of several alkylamine drugs, MDI of P450 involves formation of a metabolite that binds quasi-irreversibly to the ferrous heme iron to form a metabolic intermediate (MI) complex. The specific metabolites coordinately bound to ferrous iron and the pathways leading to MI complex formation are the subject of debate. We describe an approach combining heme iron oxidation with potassium ferricyanide and metabolite profiling to probe the mechanism of MI complex-based CYP3A4 inactivation by the secondary alkylamine drug lapatinib. Ten metabolites formed from lapatinib by CYP3A4-mediated heteroatom dealkylation, C-hydroxylation, N-oxygenation with or without further oxidation, or a combination thereof, were detected by accurate mass spectrometry. The abundance of one metabolite, the N-dealkylated nitroso/oxime lapatinib metabolite (M9), correlated directly with the prevalence or the disruption of the MI complex with CYP3A4. Nitroso/oxime metabolite formation from secondary alkylamines has been proposed to occur through two possible pathways: (1) sequential N-dealkylation, N-hydroxylation, and dehydrogenation (primary hydroxylamine pathway) or (2) N-hydroxylation with dehydrogenation to yield a nitrone followed by N-dealkylation (secondary hydroxylamine pathway). All intermediates for the secondary hydroxylamine pathway were detected but the primary N-hydroxylamine intermediate of the primary hydroxylamine pathway was not. Our findings support the mechanism of lapatinib CYP3A4 inactivation as MI complex formation with the nitroso metabolite formed through the secondary hydroxylamine and nitrone pathway, rather than by N-dealkylation to the primary amine followed by N-hydroxylation and dehydrogenation as is usually assumed.


Assuntos
Inibidores do Citocromo P-450 CYP3A , Inibidores Enzimáticos/farmacologia , Óxidos de Nitrogênio/metabolismo , Oximas/metabolismo , Quinazolinas/farmacologia , Cromatografia Líquida , Citocromo P-450 CYP3A , Humanos , Lapatinib , Espectrometria de Massas , Microssomos Hepáticos/metabolismo
11.
Drug Metab Dispos ; 39(11): 2020-33, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21795468

RESUMO

As a direct-acting inhibitor of CYP2C19 in vitro, lansoprazole is more potent than omeprazole and other proton pump inhibitors (PPIs), but lansoprazole does not cause clinically significant inhibition of CYP2C19 whereas omeprazole does. To investigate this apparent paradox, we evaluated omeprazole, esomeprazole, R-omeprazole, lansoprazole, and pantoprazole for their ability to function as direct-acting and metabolism-dependent inhibitors (MDIs) of CYP2C19 in pooled human liver microsomes (HLM) as well as in cryopreserved hepatocytes and recombinant CYP2C19. In HLM, all PPIs were found to be direct-acting inhibitors of CYP2C19 with IC(50) values varying from 1.2 µM [lansoprazole; maximum plasma concentration (C(max)) = 2.2 µM] to 93 µM (pantoprazole; C(max) = 6.5 µM). In addition, we identified omeprazole, esomeprazole, R-omeprazole, and omeprazole sulfone as MDIs of CYP2C19 (they caused IC(50) shifts after a 30-min preincubation with NADPH-fortified HLM of 4.2-, 10-, 2.5-, and 3.2-fold, respectively), whereas lansoprazole and pantoprazole were not MDIs (IC(50) shifts < 1.5-fold). The metabolism-dependent inhibition of CYP2C19 by omeprazole and esomeprazole was not reversed by ultracentrifugation, suggesting that the inhibition was irreversible (or quasi-irreversible), whereas ultracentrifugation largely reversed such effects of R-omeprazole. Under various conditions, omeprazole inactivated CYP2C19 with K(I) (inhibitor concentration that supports half the maximal rate of inactivation) values of 1.7 to 9.1 µM and k(inact) (maximal rate of enzyme inactivation) values of 0.041 to 0.046 min(-1). This study identified omeprazole, and esomeprazole, but not R-omeprazole, lansoprazole, or pantoprazole, as irreversible (or quasi-irreversible) MDIs of CYP2C19. These results have important implications for the mechanism of the clinical interaction reported between omeprazole and clopidogrel, as well as other CYP2C19 substrates.


Assuntos
Hidrocarboneto de Aril Hidroxilases/antagonistas & inibidores , Inibidores da Bomba de Prótons/farmacologia , Ticlopidina/análogos & derivados , 2-Piridinilmetilsulfinilbenzimidazóis/farmacologia , Antiulcerosos/farmacologia , Hidrocarboneto de Aril Hidroxilases/metabolismo , Clopidogrel , Citocromo P-450 CYP2C19 , Citocromo P-450 CYP2C9 , Interações Medicamentosas , Inibidores Enzimáticos/farmacologia , Esomeprazol , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Concentração Inibidora 50 , Lansoprazol , Microssomos/efeitos dos fármacos , Microssomos/metabolismo , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Omeprazol/farmacologia , Pantoprazol , Ligação Proteica , Proteínas Recombinantes/metabolismo , Ticlopidina/farmacologia
12.
Drug Metab Dispos ; 39(8): 1370-87, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21525169

RESUMO

Metabolism-dependent inhibition (MDI) of cytochrome P450 is usually assessed in vitro by examining whether the inhibitory potency of a drug candidate increases after a 30-min incubation with human liver microsomes (HLMs). To augment the IC(50) shift, many researchers incorporate a dilution step whereby the samples, after being preincubated for 30 min with a high concentration of HLMs (with and without NADPH), are diluted before measuring P450 activity. In the present study, we show that the greater IC(50) shift associated with the dilution method is a consequence of data processing. With the dilution method, IC(50) values for direct-acting inhibitors vary with the dilution factor unless they are based on the final (postdilution) inhibitor concentration, whereas the IC(50) values for MDIs vary with the dilution factor unless they are based on the initial (predilution) concentration. When the latter data are processed on the final inhibitor concentration, as is commonly done, the IC(50) values for MDI (shifted IC(50) values) decrease by the magnitude of the dilution factor. The lower shifted IC(50) values are a consequence of data processing, not enhanced P450 inactivation. In fact, for many MDIs, increasing the concentration of HLMs actually leads to considerably less P450 inactivation because of inhibitor depletion and/or binding of the inhibitor to microsomes. A true increase in P450 inactivation and IC(50) shift can be achieved by assessing MDI by a nondilution method and by decreasing the concentration of HLMs. These results have consequences for the conduct of MDI studies and the development of cut-off criteria.


Assuntos
Inibidores das Enzimas do Citocromo P-450 , Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/análise , Microssomos Hepáticos/enzimologia , Preparações Farmacêuticas/análise , Interpretação Estatística de Dados , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Feminino , Humanos , Técnicas In Vitro , Técnicas de Diluição do Indicador , Masculino , Preparações Farmacêuticas/química , Preparações Farmacêuticas/metabolismo , Especificidade por Substrato
13.
Drug Metab Pharmacokinet ; 25(1): 16-27, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20208386

RESUMO

The ability of a drug to cause clinically significant drug-drug interactions due to direct or metabolism-dependent inhibition of cytochrome P450 (CYP) can generally be predicted from in vitro studies with human liver microsomes (HLM) or recombinant CYP enzymes, as recommended by the FDA and other regulatory agencies. This review highlights some examples of system-dependent inhibition of CYP and uridine diphosphate glucuronosyltransferase (UGT) enzymes. In the case of CYP enzymes, examples are presented where in vitro studies with HLM under-predict or over-predict the degree of inhibition observed in the clinic and where the correct prediction comes from studies with human hepatocytes. Studies with HLM under-predict the ability of gemfibrozil and bupropion to cause clinically significant inhibition of CYP2C8 and CYP2D6, respectively, and over-predict the ability of ezetimibe to cause clinically significant inhibition of CYP3A4. Gemfibrozil and bupropion represent examples of glucuronidation-dependent and reduction-dependent activation to metabolites that inhibit CYP2C8 and CYP2D6, respectively, whereas ezetimibe represents an example of glucuronidation-dependent protection against metabolism-dependent inhibition of CYP3A4. This article illustrates why, when drug candidates are extensively metabolized by non-CYP enzymes, it would be prudent to use human hepatocytes in addition to HLM or recombinant enzymes to evaluate their ability to inhibit CYP enzymes.


Assuntos
Inibidores das Enzimas do Citocromo P-450 , Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/farmacologia , Glucuronosiltransferase/antagonistas & inibidores , Hepatócitos/efeitos dos fármacos , Microssomos Hepáticos/efeitos dos fármacos , Proteínas Recombinantes/efeitos dos fármacos , Azetidinas/farmacologia , Bupropiona/farmacologia , Interações Medicamentosas , Ezetimiba , Genfibrozila/farmacologia , Humanos
14.
Toxicol Appl Pharmacol ; 236(1): 109-14, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19371629

RESUMO

CDDO-Im is a synthetic triterpenoid recently shown to induce cytoprotective genes through the Nrf2-Keap1 pathway, an important mechanism for the induction of cytoprotective genes in response to oxidative stress. Upon oxidative or electrophilic insult, the transcription factor Nrf2 translocates to the nucleus, heterodimerizes with small Maf proteins, and binds to antioxidant response elements (AREs) in the upstream promoter regions of various cytoprotective genes. To further elucidate the hepatoprotective effects of CDDO-Im, wild-type and Nrf2-null mice were pretreated with CDDO-Im (1 mg/kg, i.p.) or vehicle (DMSO), and then administered acetaminophen (500 mg/kg, i.p.). Pretreatment of wild-type mice with CDDO-Im reduced liver injury caused by acetaminophen. In contrast, hepatoprotection by CDDO-Im was not observed in Nrf2-null mice. CDDO-Im increased Nrf2 protein expression and Nrf2-ARE binding in wild-type, but not Nrf2-null mice. Furthermore, CDDO-Im increased the mRNA expression of the Nrf2 target genes NAD(P)H: quinone oxidoreductase-1 (Nqo1); glutamate-cysteine ligase, catalytic subunit (Gclc); and heme-oxygenase-1 (Ho-1), in both a dose- and time-dependent manner. Conversely, CDDO-Im did not induce Nqo1, Gclc, and Ho-1 mRNA expression in Nrf2-null mice. Collectively, the present study shows that CDDO-Im pretreatment induces Nrf2-dependent cytoprotective genes and protects the liver from acetaminophen-induced hepatic injury.


Assuntos
Antioxidantes/farmacologia , Citoproteção , Imidazóis/farmacologia , Hepatopatias/prevenção & controle , Fígado/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Ácido Oleanólico/análogos & derivados , Acetaminofen , Alanina Transaminase/sangue , Animais , Doença Hepática Induzida por Substâncias e Drogas , Citoproteção/genética , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Glutamato-Cisteína Ligase/metabolismo , Heme Oxigenase-1/metabolismo , Fígado/metabolismo , Fígado/patologia , Hepatopatias/genética , Hepatopatias/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NAD(P)H Desidrogenase (Quinona) , NADPH Desidrogenase/metabolismo , Fator 2 Relacionado a NF-E2/deficiência , Fator 2 Relacionado a NF-E2/genética , Necrose , Técnicas de Transferência Nuclear , Ácido Oleanólico/farmacologia , RNA Mensageiro/metabolismo , Elementos de Resposta , Fatores de Tempo
15.
Drug Metab Dispos ; 37(4): 847-56, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19144771

RESUMO

UDP-glucuronosyltransferases (UGTs) catalyze the addition of UDP-glucuronic acid to endo- and xenobiotics, enhancing their water solubility and elimination. Many exogenous compounds, such as microsomal enzyme inducers (MEIs), alter gene expression through xenobiotic-responsive transcription factors, namely, the aryl hydrocarbon receptor (AhR), constitutive androstane receptor (CAR), pregnane X receptor (PXR), peroxisome proliferator-activated receptor alpha (PPARalpha), and nuclear factor erythroid 2-related factor 2 (Nrf2). These transcription factors regulate xenobiotic-inducible expression of hepatic and intestinal biotransformation enzymes and transporters. The purpose of this study was to determine hepatic and intestinal inducibility of mouse Ugt mRNA by MEIs. Male C57BL/6 mice were treated for four consecutive days with activators of AhR [2,3,7,8-tetrachlorodibenzodioxin (TCDD), polychlorinated biphenyl 126, and beta-naphthoflavone], CAR [1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP), phenobarbital, and diallyl sulfide], PXR [pregnenolone-16alpha-carbonitrile (PCN), spironolactone, and dexamethasone], PPARalpha (clofibrate, ciprofibrate, and diethylhexylphthalate), and Nrf2 (oltipraz, ethoxyquin, and butylated hydroxyanisole), respectively. Ugt1a1 mRNA expression in liver was induced by activators of all five transcription factor pathways, Ugt1a5 by Nrf2 activators, Ugt1a6 by all the pathways except CAR, and Ugt1a9 by all the pathways except Nrf2. Ugt2b35 mRNA in liver was induced by AhR activators and Ugt2b36 by CAR and PPARalpha activators. Throughout the small and large intestine, the AhR ligand TCDD increased Ugt1a6 and Ugt1a7 mRNA. In small intestine, the PXR activator PCN increased Ugt1a1, Ugt1a6, Ugt1a7, Ugt2b34, and Ugt2b35 mRNA in the duodenum. In conclusion, chemical activation of AhR, CAR, PXR, PPARalpha, and Nrf2 in mouse results in induction of distinct Ugt gene sets in liver and intestine, predominantly the Ugt1a isoforms.


Assuntos
Glucuronosiltransferase/genética , Intestinos/enzimologia , Fígado/enzimologia , Fator de Transcrição NF-E2/agonistas , PPAR alfa/agonistas , RNA Mensageiro/genética , Receptores de Hidrocarboneto Arílico/agonistas , Receptores Citoplasmáticos e Nucleares/agonistas , Receptores de Esteroides/agonistas , Fatores de Transcrição/agonistas , Animais , Receptor Constitutivo de Androstano , Regulação Enzimológica da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptor de Pregnano X , Fatores de Transcrição/metabolismo
16.
Drug Metab Dispos ; 37(4): 834-40, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19131521

RESUMO

UDP-glucuronosyltransferases (UGTs) catalyze the addition of glucuronic acid to endo- and xenobiotics, increasing hydrophilicity and enhancing elimination. Gender-divergent glucuronidation rates are observed in humans and rats, and gender differences in UGT mRNA levels have been observed in rodents. The purpose of this study was to establish the hormonal regulation of gender-dependent Ugt mRNA expression in mouse liver and kidney. Therefore, three mouse models were used to characterize the involvement of sex hormones and gender-specific growth hormone (GH) secretion patterns, including 1) hypophysectomized mice treated with male- or female-pattern GH, testosterone, or 17beta-estradiol; 2) GH releasing hormone receptor-deficient little (lit/lit) mice treated with male- or female-pattern GH; and 3) gonadectomized mice treated with testosterone or 17beta-estradiol. Messenger RNA expression of mouse Ugt isozymes was determined by the branched DNA assay. In C57BL/6 mice, male-predominant expression of Ugt2b1 and Ugt2b38 was observed in liver and kidney, respectively. Female-predominant expression was observed for Ugt1a1 and Ugt1a5 in liver and Ugt1a2 in kidney. In liver, regulation of Ugt1a1 and Ugt1a5 expression was attributed to repression of Ugt mRNA by male-pattern GH secretion. Conversely, regulation of Ugt2b1 expression in liver was attributed to male-pattern GH secretion. In kidney, regulation of Ugt2b38 expression was attributed to inductive effects by testosterone. Conversely, Ugt1a2 expression in kidney was negatively regulated by testosterone. In conclusion, gender differences in mouse Ugt mRNA expression were influenced by male-pattern GH secretion in liver, whereas gender differences were regulated by the effects of androgens in kidney.


Assuntos
Rim/enzimologia , Fígado/enzimologia , RNA Mensageiro/genética , Fatores Sexuais , Animais , Feminino , Glucuronosiltransferase , Hormônios Esteroides Gonadais/metabolismo , Hormônio do Crescimento/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase Via Transcriptase Reversa
17.
Drug Metab Dispos ; 35(1): 121-7, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17050650

RESUMO

UDP-glucuronosyltransferases (UGTs) catalyze phase II biotransformation reactions in which lipophilic substrates are conjugated with glucuronic acid to increase water solubility and enhance excretion. Currently, little information regarding tissue- or gender-specific expression of mouse UGTs is available. Mice are increasingly popular models in biomedical research, and therefore, thorough characterization of murine drug metabolism is desired. The purpose of the present study was to determine both tissue- and gender-specific UGT gene expression profiles in mice. RNA from 14 tissues was isolated from male and female C57BL/6 mice and UGT expression was determined by the branched DNA signal amplification assay. UGTs highly expressed in mouse liver include Ugt1a1, Ugt1a5, Ugt1a6, Ugt1a9, Ugt2a3, Ugt2b1, Ugt2b5/37/38, Ugt2b34, Ugt2b35, and Ugt2b36. Several isoforms were expressed in the gastrointestinal (GI) tract, including Ugt1a6, Ugt1a7c, Ugt2a3, Ugt2b34, and Ugt2b35. In kidney, Ugt1a2, Ugt1a7c, Ugt2b5/37/38, Ugt2b35, and Ugt3a1/2 were expressed. UGT expression was also observed in other tissues: lung (Ugt1a6), brain (Ugt2b35), testis and ovary (Ugt1a6 and Ugt2b35), and nasal epithelia (Ugt2a1/2). Male-predominant expression was observed for Ugt2b1 in liver, Ugt2b5/37/38 in kidney, and Ugt1a6 in lung. Female-predominant expression was observed for Ugt1a1 and Ugt1a5 in liver, Ugt1a2 in kidney, Ugt2b35 in brain, and Ugt2a1/2 in nasal epithelia. UDP-glucose pyrophosphorylase was highly expressed in liver, kidney, and GI tract, whereas UDP-glucose dehydrogenase was highly expressed in the GI tract. In conclusion, marked differences in tissue- and gender-specific expression patterns of UGTs exist in mice, potentially influencing drug metabolism and pharmacokinetics.


Assuntos
Glucuronosiltransferase/metabolismo , UTP-Glucose-1-Fosfato Uridililtransferase/metabolismo , Uridina Difosfato Glucose Desidrogenase/metabolismo , Animais , Feminino , Trato Gastrointestinal/metabolismo , Glucuronosiltransferase/genética , Rim/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/metabolismo , Fatores Sexuais , UTP-Glucose-1-Fosfato Uridililtransferase/genética , Uridina Difosfato Glucose Desidrogenase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...