Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Chem Biol ; 29(1): 57-66.e6, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34499862

RESUMO

While there are hundreds of predicted E3 ligases, characterizing their applications for targeted protein degradation has proved challenging. Here, we report a chemical biology approach to evaluate the ability of modified recombinant E3 ligase components to support neo-substrate degradation. Bypassing the need for specific E3 ligase binders, we use maleimide-thiol chemistry for covalent functionalization followed by E3 electroporation (COFFEE) in live cells. We demonstrate that electroporated recombinant von Hippel-Lindau (VHL) protein, covalently functionalized at its ligandable cysteine with JQ1 or dasatinib, induces degradation of BRD4 or tyrosine kinases, respectively. Furthermore, by applying COFFEE to SPSB2, a Cullin-RING ligase 5 receptor, as well as to SKP1, the adaptor protein for Cullin-RING ligase 1 F box (SCF) complexes, we validate this method as a powerful approach to define the activity of previously uncharacterized ubiquitin ligase components, and provide further evidence that not only E3 ligase receptors but also adaptors can be directly hijacked for neo-substrate degradation.


Assuntos
Ubiquitina-Proteína Ligases/metabolismo , Linhagem Celular , Feminino , Humanos , Masculino , Proteínas Recombinantes/metabolismo
2.
Cell Rep ; 34(1): 108532, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33406420

RESUMO

Heterobifunctional proteolysis-targeting chimeric compounds leverage the activity of E3 ligases to induce degradation of target oncoproteins and exhibit potent preclinical antitumor activity. To dissect the mechanisms regulating tumor cell sensitivity to different classes of pharmacological "degraders" of oncoproteins, we performed genome-scale CRISPR-Cas9-based gene editing studies. We observed that myeloma cell resistance to degraders of different targets (BET bromodomain proteins, CDK9) and operating through CRBN (degronimids) or VHL is primarily mediated by prevention of, rather than adaptation to, breakdown of the target oncoprotein; and this involves loss of function of the cognate E3 ligase or interactors/regulators of the respective cullin-RING ligase (CRL) complex. The substantial gene-level differences for resistance mechanisms to CRBN- versus VHL-based degraders explains mechanistically the lack of cross-resistance with sequential administration of these two degrader classes. Development of degraders leveraging more diverse E3 ligases/CRLs may facilitate sequential/alternating versus combined uses of these agents toward potentially delaying or preventing resistance.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Antineoplásicos/farmacologia , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Animais , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Quinase 9 Dependente de Ciclina/metabolismo , Resistencia a Medicamentos Antineoplásicos , Edição de Genes , Regulação Neoplásica da Expressão Gênica , Homologia de Genes , Estudo de Associação Genômica Ampla , Genômica/métodos , Humanos , Camundongos , Mieloma Múltiplo/tratamento farmacológico , Proteínas Oncogênicas/metabolismo , Proteínas/antagonistas & inibidores , Proteínas/metabolismo , Proteólise , Células Tumorais Cultivadas
3.
Nat Commun ; 11(1): 4687, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32948771

RESUMO

Chemical biology strategies for directly perturbing protein homeostasis including the degradation tag (dTAG) system provide temporal advantages over genetic approaches and improved selectivity over small molecule inhibitors. We describe dTAGV-1, an exclusively selective VHL-recruiting dTAG molecule, to rapidly degrade FKBP12F36V-tagged proteins. dTAGV-1 overcomes a limitation of previously reported CRBN-recruiting dTAG molecules to degrade recalcitrant oncogenes, supports combination degrader studies and facilitates investigations of protein function in cells and mice.


Assuntos
Peptídeo Hidrolases/metabolismo , Proteínas/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Animais , Feminino , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Modelos Animais , Proteômica , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteína 1A de Ligação a Tacrolimo/genética , Proteína 1A de Ligação a Tacrolimo/metabolismo , Proteínas de Ligação a Tacrolimo , Proteína Supressora de Tumor Von Hippel-Lindau/genética
4.
ACS Med Chem Lett ; 10(10): 1443-1449, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31620231

RESUMO

Recent reports have highlighted the dual bromodomains of TAF1 (TAF1(1,2)) as synergistic with BET inhibition in cellular cancer models, engendering interest in TAF/BET polypharmacology. Here, we examine structure activity relationships within the BI-2536 PLK1 kinase inhibitor scaffold, previously reported to bind BRD4. We examine binding by this ligand to TAF1(2) and apply structure guided design strategies to discriminate binding to both the PLK1 kinase and BRD4(1) bromodomain while retaining activity on TAF1(2). Through this effort we discover potent dual inhibitors of TAF1(2)/BRD4(1), as well as biased derivatives showing marked TAF1 selectivity. We resolve X-ray crystallographic data sets to examine the mechanisms of the observed TAF1 selectivity and to provide a resource for further development of this scaffold.

5.
Nat Genet ; 51(6): 990-998, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31133746

RESUMO

The histone acetyl reader bromodomain-containing protein 4 (BRD4) is an important regulator of chromatin structure and transcription, yet factors modulating its activity have remained elusive. Here we describe two complementary screens for genetic and physical interactors of BRD4, which converge on the folate pathway enzyme MTHFD1 (methylenetetrahydrofolate dehydrogenase, cyclohydrolase and formyltetrahydrofolate synthetase 1). We show that a fraction of MTHFD1 resides in the nucleus, where it is recruited to distinct genomic loci by direct interaction with BRD4. Inhibition of either BRD4 or MTHFD1 results in similar changes in nuclear metabolite composition and gene expression; pharmacological inhibitors of the two pathways synergize to impair cancer cell viability in vitro and in vivo. Our finding that MTHFD1 and other metabolic enzymes are chromatin associated suggests a direct role for nuclear metabolism in the control of gene expression.


Assuntos
Ácido Fólico/metabolismo , Regulação da Expressão Gênica , Metilenotetra-Hidrofolato Desidrogenase (NADP)/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Cromatina/genética , Técnicas de Inativação de Genes , Humanos , Mutação com Perda de Função , Ligação Proteica , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Transporte Proteico , Transdução de Sinais , Transcrição Gênica
6.
Cancer Cell ; 34(3): 499-512.e9, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30205049

RESUMO

NPM1 is the most frequently mutated gene in cytogenetically normal acute myeloid leukemia (AML). In AML cells, NPM1 mutations result in abnormal cytoplasmic localization of the mutant protein (NPM1c); however, it is unknown whether NPM1c is required to maintain the leukemic state. Here, we show that loss of NPM1c from the cytoplasm, either through nuclear relocalization or targeted degradation, results in immediate downregulation of homeobox (HOX) genes followed by differentiation. Finally, we show that XPO1 inhibition relocalizes NPM1c to the nucleus, promotes differentiation of AML cells, and prolongs survival of Npm1-mutated leukemic mice. We describe an exquisite dependency of NPM1-mutant AML cells on NPM1c, providing the rationale for the use of nuclear export inhibitors in AML with mutated NPM1.


Assuntos
Regulação Leucêmica da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Leucemia Mieloide Aguda/genética , Proteínas Nucleares/genética , Idoso , Animais , Diferenciação Celular/genética , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Regulação para Baixo , Feminino , Humanos , Hidrazinas/farmacologia , Carioferinas/antagonistas & inibidores , Carioferinas/metabolismo , Leucemia Mieloide Aguda/mortalidade , Leucemia Mieloide Aguda/patologia , Camundongos , Mutação , Proteínas Nucleares/metabolismo , Nucleofosmina , Proteólise , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Receptores Citoplasmáticos e Nucleares/metabolismo , Triazóis/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína Exportina 1
7.
J Med Chem ; 61(17): 7785-7795, 2018 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-30125504

RESUMO

The simultaneous inhibition of polo-like kinase 1 (PLK1) and BRD4 bromodomain by a single molecule could lead to the development of an effective therapeutic strategy for a variety of diseases in which PLK1 and BRD4 are implicated. Compound 23 has been found to be a potent dual kinase-bromodomain inhibitor (BRD4-BD1 IC50 = 28 nM, PLK1 IC50 = 40 nM). Compound 6 was found to be the most selective PLK1 inhibitor over BRD4 in our series (BRD4-BD1 IC50 = 2579 nM, PLK1 IC50 = 9.9 nM). Molecular docking studies with 23 and BRD4-BD1/PLK1 as well as with 6 corroborate the biochemical assay results.


Assuntos
Proteínas de Ciclo Celular/antagonistas & inibidores , Desenho de Fármacos , Leucemia Mieloide Aguda/tratamento farmacológico , Proteínas Nucleares/antagonistas & inibidores , Conformação Proteica , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Fatores de Transcrição/antagonistas & inibidores , Humanos , Leucemia Mieloide Aguda/enzimologia , Leucemia Mieloide Aguda/patologia , Modelos Moleculares , Simulação de Acoplamento Molecular , Estrutura Molecular , Domínios Proteicos , Relação Estrutura-Atividade , Células Tumorais Cultivadas , Quinase 1 Polo-Like
8.
ACS Chem Biol ; 13(9): 2438-2448, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30102854

RESUMO

Bromodomains have been pursued intensively over the past several years as emerging targets for the development of anticancer and anti-inflammatory agents. It has recently been shown that some kinase inhibitors are able to potently inhibit the bromodomains of BRD4. The clinical activities of PLK inhibitor BI-2536 and JAK2-FLT3 inhibitor TG101348 have been attributed to this unexpected polypharmacology, indicating that dual-kinase/bromodomain activity may be advantageous in a therapeutic context. However, for target validation and biological investigation, a more selective target profile is desired. Here, we report that benzo[e]pyrimido-[5,4- b]diazepine-6(11H)-ones, versatile ATP-site directed kinase pharmacophores utilized in the development of inhibitors of multiple kinases, including several previously reported kinase chemical probes, are also capable of exhibiting potent BRD4-dependent pharmacology. Using a dual kinase-bromodomain inhibitor of the kinase domains of ERK5 and LRRK2, and the bromodomain of BRD4 as a case study, we define the structure-activity relationships required to achieve dual kinase/BRD4 activity, as well as how to direct selectivity toward inhibition of either ERK5 or BRD4. This effort resulted in identification of one of the first reported kinase-selective chemical probes for ERK5 (JWG-071), a BET selective inhibitor with 1 µM BRD4 IC50 (JWG-115), and additional inhibitors with rationally designed polypharmacology (JWG-047, JWG-069). Co-crystallography of seven representative inhibitors with the first bromodomain of BRD4 demonstrate that distinct atropisomeric conformers recognize the kinase ATP-site and the BRD4 acetyl lysine binding site, conformational preferences supported by rigid docking studies.


Assuntos
Proteínas Nucleares/antagonistas & inibidores , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/química , Pirimidinas/farmacologia , Fatores de Transcrição/antagonistas & inibidores , Benzodiazepinonas/química , Benzodiazepinonas/farmacologia , Proteínas de Ciclo Celular , Cristalografia por Raios X , Células HeLa , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/antagonistas & inibidores , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/química , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Proteína Quinase 7 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 7 Ativada por Mitógeno/química , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Modelos Moleculares , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Polifarmacologia , Relação Estrutura-Atividade , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
9.
Nat Chem Biol ; 14(7): 706-714, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29892083

RESUMO

Heterobifunctional small-molecule degraders that induce protein degradation through ligase-mediated ubiquitination have shown considerable promise as a new pharmacological modality. However, we currently lack a detailed understanding of the molecular basis for target recruitment and selectivity, which is critically required to enable rational design of degraders. Here we utilize a comprehensive characterization of the ligand-dependent CRBN-BRD4 interaction to demonstrate that binding between proteins that have not evolved to interact is plastic. Multiple X-ray crystal structures show that plasticity results in several distinct low-energy binding conformations that are selectively bound by ligands. We demonstrate that computational protein-protein docking can reveal the underlying interprotein contacts and inform the design of a BRD4 selective degrader that can discriminate between highly homologous BET bromodomains. Our findings that plastic interprotein contacts confer selectivity for ligand-induced protein dimerization provide a conceptual framework for the development of heterobifunctional ligands.


Assuntos
Acetamidas/farmacologia , Proteínas Nucleares/metabolismo , Peptídeo Hidrolases/metabolismo , Talidomida/farmacologia , Tiofenos/farmacologia , Fatores de Transcrição/metabolismo , Acetamidas/química , Proteínas Adaptadoras de Transdução de Sinal , Sítios de Ligação/efeitos dos fármacos , Proteínas de Ciclo Celular , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Humanos , Ligantes , Modelos Moleculares , Conformação Molecular , Proteínas Nucleares/química , Peptídeo Hidrolases/química , Talidomida/química , Tiofenos/química , Fatores de Transcrição/química , Ubiquitina-Proteína Ligases
10.
Proc Natl Acad Sci U S A ; 115(22): E5086-E5095, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29764999

RESUMO

Competitive BET bromodomain inhibitors (BBIs) targeting BET proteins (BRD2, BRD3, BRD4, and BRDT) show promising preclinical activities against brain cancers. However, the BET protein-dependent glioblastoma (GBM)-promoting transcriptional network remains elusive. Here, with mechanistic exploration of a next-generation chemical degrader of BET proteins (dBET6), we reveal a profound and consistent impact of BET proteins on E2F1- dependent transcriptional program in both differentiated GBM cells and brain tumor-initiating cells. dBET6 treatment drastically reduces BET protein genomic occupancy, RNA-Pol2 activity, and permissive chromatin marks. Subsequently, dBET6 represses the proliferation, self-renewal, and tumorigenic ability of GBM cells. Moreover, dBET6-induced degradation of BET proteins exerts superior antiproliferation effects compared to conventional BBIs and overcomes both intrinsic and acquired resistance to BBIs in GBM cells. Our study reveals crucial functions of BET proteins and provides the rationale and therapeutic merits of targeted degradation of BET proteins in GBM.


Assuntos
Antineoplásicos/farmacologia , Fator de Transcrição E2F1 , Glioblastoma , Proteínas Serina-Treonina Quinases , Proteínas de Ligação a RNA , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Fator de Transcrição E2F1/antagonistas & inibidores , Fator de Transcrição E2F1/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/metabolismo , Domínios Proteicos , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo
11.
Nat Chem Biol ; 14(4): 405-412, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29507391

RESUMO

The addressable pocket of a protein is often not functionally relevant in disease. This is true for the multidomain, bromodomain-containing transcriptional regulator TRIM24. TRIM24 has been posited as a dependency in numerous cancers, yet potent and selective ligands for the TRIM24 bromodomain do not exert effective anti-proliferative responses. We therefore repositioned these probes as targeting features for heterobifunctional protein degraders. Recruitment of the VHL E3 ubiquitin ligase by dTRIM24 elicits potent and selective degradation of TRIM24. Using dTRIM24 to probe TRIM24 function, we characterize the dynamic genome-wide consequences of TRIM24 loss on chromatin localization and gene control. Further, we identify TRIM24 as a novel dependency in acute leukemia. Pairwise study of TRIM24 degradation versus bromodomain inhibition reveals enhanced anti-proliferative response from degradation. We offer dTRIM24 as a chemical probe of an emerging cancer dependency, and establish a path forward for numerous selective yet ineffectual ligands for proteins of therapeutic interest.


Assuntos
Proteínas de Transporte/química , Células 3T3 , Animais , Linhagem Celular Tumoral , Proliferação de Células , Cristalografia por Raios X , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Leucemia Mieloide Aguda/metabolismo , Ligantes , Células MCF-7 , Camundongos , Mutagênese , Proteínas Nucleares/química , Complexo de Endopeptidases do Proteassoma/química , Ligação Proteica , Domínios Proteicos , RNA Interferente Pequeno/metabolismo , Fatores de Transcrição/química
12.
Nat Chem Biol ; 14(5): 431-441, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29581585

RESUMO

Dissection of complex biological systems requires target-specific control of the function or abundance of proteins. Genetic perturbations are limited by off-target effects, multicomponent complexity, and irreversibility. Most limiting is the requisite delay between modulation to experimental measurement. To enable the immediate and selective control of single protein abundance, we created a chemical biology system that leverages the potency of cell-permeable heterobifunctional degraders. The dTAG system pairs a novel degrader of FKBP12F36V with expression of FKBP12F36V in-frame with a protein of interest. By transgene expression or CRISPR-mediated locus-specific knock-in, we exemplify a generalizable strategy to study the immediate consequence of protein loss. Using dTAG, we observe an unexpected superior antiproliferative effect of pan-BET bromodomain degradation over selective BRD4 degradation, characterize immediate effects of KRASG12V loss on proteomic signaling, and demonstrate rapid degradation in vivo. This technology platform will confer kinetic resolution to biological investigation and provide target validation in the context of drug discovery.


Assuntos
Sistemas CRISPR-Cas , Proteínas Nucleares/química , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteína 1A de Ligação a Tacrolimo/química , Fatores de Transcrição/genética , Alelos , Animais , Proteínas de Ciclo Celular , Proliferação de Células , Citoplasma/metabolismo , Dimerização , Técnicas de Introdução de Genes , Células HEK293 , Homeostase , Humanos , Ligantes , Camundongos , Mutação , Células NIH 3T3 , Proteínas Nucleares/genética , Ligação Proteica , Domínios Proteicos , Proteólise , Proteômica , Transdução de Sinais , Transgenes
13.
Cell Chem Biol ; 25(1): 88-99.e6, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29129717

RESUMO

Heterobifunctional molecules that recruit E3 ubiquitin ligases, such as cereblon, for targeted protein degradation represent an emerging pharmacological strategy. A major unanswered question is how generally applicable this strategy is to all protein targets. In this study, we designed a multi-kinase degrader by conjugating a highly promiscuous kinase inhibitor with a cereblon-binding ligand, and used quantitative proteomics to discover 28 kinases, including BTK, PTK2, PTK2B, FLT3, AURKA, AURKB, TEC, ULK1, ITK, and nine members of the CDK family, as degradable. This set of kinases is only a fraction of the intracellular targets bound by the degrader, demonstrating that successful degradation requires more than target engagement. The results guided us to develop selective degraders for FLT3 and BTK, with potentials to improve disease treatment. Together, this study demonstrates an efficient approach to triage a gene family of interest to identify readily degradable targets for further studies and pre-clinical developments.


Assuntos
Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Proteômica , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Tirosina Quinase da Agamaglobulinemia/genética , Tirosina Quinase da Agamaglobulinemia/metabolismo , Humanos , Inibidores de Proteínas Quinases/química , Proteólise , Tirosina Quinase 3 Semelhante a fms/genética , Tirosina Quinase 3 Semelhante a fms/metabolismo
14.
Cell ; 171(7): 1573-1588.e28, 2017 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-29224777

RESUMO

There is considerable evidence that chromosome structure plays important roles in gene control, but we have limited understanding of the proteins that contribute to structural interactions between gene promoters and their enhancer elements. Large DNA loops that encompass genes and their regulatory elements depend on CTCF-CTCF interactions, but most enhancer-promoter interactions do not employ this structural protein. Here, we show that the ubiquitously expressed transcription factor Yin Yang 1 (YY1) contributes to enhancer-promoter structural interactions in a manner analogous to DNA interactions mediated by CTCF. YY1 binds to active enhancers and promoter-proximal elements and forms dimers that facilitate the interaction of these DNA elements. Deletion of YY1 binding sites or depletion of YY1 protein disrupts enhancer-promoter looping and gene expression. We propose that YY1-mediated enhancer-promoter interactions are a general feature of mammalian gene control.


Assuntos
Elementos Facilitadores Genéticos , Regiões Promotoras Genéticas , Fator de Transcrição YY1/metabolismo , Animais , Fator de Ligação a CCCTC/metabolismo , Células-Tronco Embrionárias/metabolismo , Humanos , Camundongos
15.
Elife ; 62017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28926338

RESUMO

Thorough preclinical target validation is essential for the success of drug discovery efforts. In this study, we combined chemical and genetic perturbants, including the development of a novel selective maternal embryonic leucine zipper kinase (MELK) inhibitor HTH-01-091, CRISPR/Cas9-mediated MELK knockout, a novel chemical-induced protein degradation strategy, RNA interference and CRISPR interference to validate MELK as a therapeutic target in basal-like breast cancers (BBC). In common culture conditions, we found that small molecule inhibition, genetic deletion, or acute depletion of MELK did not significantly affect cellular growth. This discrepancy to previous findings illuminated selectivity issues of the widely used MELK inhibitor OTSSP167, and potential off-target effects of MELK-targeting short hairpins. The different genetic and chemical tools developed here allow for the identification and validation of any causal roles MELK may play in cancer biology, which will be required to guide future MELK drug discovery efforts. Furthermore, our study provides a general framework for preclinical target validation.


Assuntos
Neoplasias da Mama/patologia , Proliferação de Células , Proteínas Serina-Treonina Quinases/análise , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Técnicas de Inativação de Genes , Humanos , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética
16.
Nat Med ; 23(9): 1063-1071, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28805820

RESUMO

The bromodomain and extraterminal (BET) family of proteins comprises four members-BRD2, BRD3, BRD4 and the testis-specific isoform BRDT-that largely function as transcriptional coactivators and play critical roles in various cellular processes, including the cell cycle, apoptosis, migration and invasion. BET proteins enhance the oncogenic functions of major cancer drivers by elevating the expression of these drivers, such as c-Myc in leukemia, or by promoting the transcriptional activities of oncogenic factors, such as AR and ERG in prostate cancer. Pathologically, BET proteins are frequently overexpressed and are clinically linked to various types of human cancer; they are therefore being pursued as attractive therapeutic targets for selective inhibition in patients with cancer. To this end, a number of bromodomain inhibitors, including JQ1 and I-BET, have been developed and have shown promising outcomes in early clinical trials. Although resistance to BET inhibitors has been documented in preclinical models, the molecular mechanisms underlying acquired resistance are largely unknown. Here we report that cullin-3SPOP earmarks BET proteins, including BRD2, BRD3 and BRD4, for ubiquitination-mediated degradation. Pathologically, prostate cancer-associated SPOP mutants fail to interact with and promote the degradation of BET proteins, leading to their elevated abundance in SPOP-mutant prostate cancer. As a result, prostate cancer cell lines and organoids derived from individuals harboring SPOP mutations are more resistant to BET-inhibitor-induced cell growth arrest and apoptosis. Therefore, our results elucidate the tumor-suppressor role of SPOP in prostate cancer in which it acts as a negative regulator of BET protein stability and also provide a molecular mechanism for resistance to BET inhibitors in individuals with prostate cancer bearing SPOP mutations.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Neoplasias da Próstata/genética , Proteínas Repressoras/genética , Fatores de Transcrição/metabolismo , Apoptose , Azepinas , Benzodiazepinas , Proteínas de Ciclo Celular , Proliferação de Células , Proteínas Culina , Células HEK293 , Células HeLa , Humanos , Immunoblotting , Imunoprecipitação , Masculino , Terapia de Alvo Molecular , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Proteínas Serina-Treonina Quinases , Proteínas de Ligação a RNA , Talidomida/análogos & derivados , Triazóis , Ubiquitinação
17.
Mol Cell ; 67(1): 5-18.e19, 2017 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-28673542

RESUMO

Processive elongation of RNA Polymerase II from a proximal promoter paused state is a rate-limiting event in human gene control. A small number of regulatory factors influence transcription elongation on a global scale. Prior research using small-molecule BET bromodomain inhibitors, such as JQ1, linked BRD4 to context-specific elongation at a limited number of genes associated with massive enhancer regions. Here, the mechanistic characterization of an optimized chemical degrader of BET bromodomain proteins, dBET6, led to the unexpected identification of BET proteins as master regulators of global transcription elongation. In contrast to the selective effect of bromodomain inhibition on transcription, BET degradation prompts a collapse of global elongation that phenocopies CDK9 inhibition. Notably, BRD4 loss does not directly affect CDK9 localization. These studies, performed in translational models of T cell leukemia, establish a mechanism-based rationale for the development of BET bromodomain degradation as cancer therapy.


Assuntos
Quinase 9 Dependente de Ciclina/metabolismo , Proteínas Nucleares/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Elongação da Transcrição Genética , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Antineoplásicos/farmacologia , Proteínas de Ciclo Celular , Quinase 9 Dependente de Ciclina/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Relação Dose-Resposta a Droga , Feminino , Regulação Leucêmica da Expressão Gênica , Células HCT116 , Células HEK293 , Humanos , Células Jurkat , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , Complexos Multiproteicos , Proteínas Nucleares/genética , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Estabilidade Proteica , Proteólise , RNA Polimerase II/metabolismo , Fatores de Tempo , Elongação da Transcrição Genética/efeitos dos fármacos , Fatores de Transcrição/genética , Transfecção , Ubiquitina-Proteína Ligases , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Angew Chem Int Ed Engl ; 56(21): 5738-5743, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28418626

RESUMO

The bromodomain-containing protein BRD9, a subunit of the human BAF (SWI/SNF) nucleosome remodeling complex, has emerged as an attractive therapeutic target in cancer. Despite the development of chemical probes targeting the BRD9 bromodomain, there is a limited understanding of BRD9 function beyond acetyl-lysine recognition. We have therefore created the first BRD9-directed chemical degraders, through iterative design and testing of heterobifunctional ligands that bridge the BRD9 bromodomain and the cereblon E3 ubiquitin ligase complex. Degraders of BRD9 exhibit markedly enhanced potency compared to parental ligands (10- to 100-fold). Parallel study of degraders with divergent BRD9-binding chemotypes in models of acute myeloid leukemia resolves bromodomain polypharmacology in this emerging drug class. Together, these findings reveal the tractability of non-BET bromodomain containing proteins to chemical degradation, and highlight lead compound dBRD9 as a tool for the study of BRD9.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas Nucleares/química , Fatores de Transcrição/química , Sistemas de Liberação de Medicamentos , Humanos , Ligantes , Estrutura Molecular , Pirróis/química
19.
Nature ; 543(7644): 270-274, 2017 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-28241139

RESUMO

Recurrent chromosomal translocations producing a chimaeric MLL oncogene give rise to a highly aggressive acute leukaemia associated with poor clinical outcome. The preferential involvement of chromatin-associated factors as MLL fusion partners belies a dependency on transcription control. Despite recent progress made in targeting chromatin regulators in cancer, available therapies for this well-characterized disease remain inadequate, prompting the need to identify new targets for therapeutic intervention. Here, using unbiased CRISPR-Cas9 technology to perform a genome-scale loss-of-function screen in an MLL-AF4-positive acute leukaemia cell line, we identify ENL as an unrecognized gene that is specifically required for proliferation in vitro and in vivo. To explain the mechanistic role of ENL in leukaemia pathogenesis and dynamic transcription control, a chemical genetic strategy was developed to achieve targeted protein degradation. Acute loss of ENL suppressed the initiation and elongation of RNA polymerase II at active genes genome-wide, with pronounced effects at genes featuring a disproportionate ENL load. Notably, an intact YEATS chromatin-reader domain was essential for ENL-dependent leukaemic growth. Overall, these findings identify a dependency factor in acute leukaemia and suggest a mechanistic rationale for disrupting the YEATS domain in disease.


Assuntos
Regulação Neoplásica da Expressão Gênica , Leucemia/genética , Leucemia/metabolismo , Domínios Proteicos , Transcrição Gênica , Fatores de Elongação da Transcrição/química , Fatores de Elongação da Transcrição/metabolismo , Animais , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Proliferação de Células , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Epigênese Genética , Edição de Genes , Genoma/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Leucemia/patologia , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Camundongos , Proteína de Leucina Linfoide-Mieloide/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Proteólise , RNA Polimerase II/metabolismo , Elongação da Transcrição Genética , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Elongação da Transcrição/genética
20.
Front Immunol ; 8: 1920, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29358938

RESUMO

Bifunctional degraders, also referred to as proteolysis-targeting chimeras (PROTACs), are a recently developed class of small molecules. They were designed to specifically target endogenous proteins for ubiquitin/proteasome-dependent degradation and to thereby interfere with pathological mechanisms of diseases, including cancer. In this study, we hypothesized that this process of acute pharmacologic protein degradation might increase the direct MHC class I presentation of degraded targets. By studying this question, we contribute to an ongoing discussion about the origin of peptides feeding the MHC class I presentation pathway. Two scenarios have been postulated: peptides can either be derived from homeostatic turnover of mature proteins and/or from short-lived defective ribosomal products (DRiPs), but currently, it is still unclear to what ratio and efficiency both pathways contribute to the overall MHC class I presentation. We therefore generated the intrinsically stable model antigen GFP-S8L-F12 that was susceptible to acute pharmacologic degradation via the previously described degradation tag (dTAG) system. Using different murine cell lines, we show here that the bifunctional molecule dTAG-7 induced rapid proteasome-dependent degradation of GFP-S8L-F12 and simultaneously increased its direct presentation on MHC class I molecules. Using the same model in a doxycycline-inducible setting, we could further show that stable, mature antigen was the major source of peptides presented, thereby excluding a dominant role of DRiPs in our system. This study is, to our knowledge, the first to investigate targeted pharmacologic protein degradation in the context of antigen presentation and our data point toward future applications by strategically combining therapies using bifunctional degraders with their stimulating effect on direct MHC class I presentation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...