Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioengineering (Basel) ; 11(6)2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38927824

RESUMO

Chronic wounds present a significant socioeconomic burden forecasted to increase in prevalence and cost. Minimally manipulated human placental tissues have been increasingly employed and proven to be advantageous in the treatment of chronic wounds, showing improved clinical outcomes and cost-effectiveness. However, technological advances have been constrained by minimal manipulation and homologous use criteria. This study focuses on the characterization of a novel dehydrated human umbilical cord particulate (dHUCP) medical device, which offers a unique allogeneic technological advancement and the first human birth tissue device for wound management. Characterization analyses illustrated a complex extracellular matrix composition conserved in the dHUCP device compared to native umbilical cord, with abundant collagens and glycosaminoglycans imbibing an intricate porous scaffold. Dermal fibroblasts readily attached to the intact scaffold of the dHUCP device. Furthermore, the dHUCP device elicited a significant paracrine proliferative response in dermal fibroblasts, in contrast to fibrillar collagen, a prevalent wound device. Biocompatibility testing in a porcine full-thickness wound model showed resorption of the dHUCP device and normal granulation tissue maturation during healing. The dHUCP device is a promising advancement in wound management biomaterials, offering a unique combination of structural complexity adept for challenging wound topographies and a microenvironment supportive of tissue regeneration.

2.
Sci Rep ; 14(1): 2856, 2024 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-38310132

RESUMO

Understanding the complex biomechanical tumor microenvironment (TME) is of critical importance in developing the next generation of anti-cancer treatment strategies. This is especially true in epithelial ovarian cancer (EOC), the deadliest of the gynecologic cancers due to recurrent disease or chemoresistance. However, current models of EOC progression provide little control or ability to monitor how changes in biomechanical parameters alter EOC cell behaviors. In this study, we present a microfluidic device designed to permit biomechanical investigations of the ovarian TME. Using this microtissue system, we describe how biomechanical stimulation in the form of tensile strains upregulate phosphorylation of HSP27, a heat shock protein implicated in ovarian cancer chemoresistance. Furthermore, EOC cells treated with strain demonstrate decreased response to paclitaxel in the in vitro vascularized TME model. The results provide a direct link to biomechanical regulation of HSP27 as a mediator of EOC chemoresistance, possibly explaining the failure of such therapies in some patients. The work presented here lays a foundation to elucidating mechanobiological regulation of EOC progression, including chemoresistance and could provide novel targets for anti-cancer therapeutics.


Assuntos
Neoplasias Epiteliais e Glandulares , Neoplasias Ovarianas , Feminino , Humanos , Carcinoma Epitelial do Ovário/patologia , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Proteínas de Choque Térmico HSP27/metabolismo , Neoplasias Ovarianas/patologia , Paclitaxel/farmacologia , Microambiente Tumoral
3.
BMC Biol ; 21(1): 290, 2023 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-38072992

RESUMO

BACKGROUND: Angiogenesis, or the growth of new vasculature from existing blood vessels, is widely considered a primary hallmark of cancer progression. When a tumor is small, diffusion is sufficient to receive essential nutrients; however, as the tumor grows, a vascular supply is needed to deliver oxygen and nutrients into the increasing mass. Several anti-angiogenic cancer therapies target VEGF and the receptor VEGFR-2, which are major promoters of blood vessel development. Unfortunately, many of these cancer treatments fail to completely stop angiogenesis in the tumor microenvironment (TME). Since these therapies focus on the biochemical activation of VEGFR-2 via VEGF ligand binding, we propose that mechanical cues, particularly those found in the TME, may be a source of VEGFR-2 activation that promotes growth of blood vessel networks even in the presence of VEGF and VEGFR-2 inhibitors. RESULTS: In this paper, we analyzed phosphorylation patterns of VEGFR-2, particularly at Y1054/Y1059 and Y1214, stimulated via either VEGF or biomechanical stimulation in the form of tensile strains. Our results show prolonged and enhanced activation at both Y1054/Y1059 and Y1214 residues when endothelial cells were stimulated with strain, VEGF, or a combination of both. We also analyzed Src expression, which is downstream of VEGFR-2 and can be activated through strain or the presence of VEGF. Finally, we used fibrin gels and microfluidic devices as 3D microtissue models to simulate the TME. We determined that regions of mechanical strain promoted increased vessel growth, even with VEGFR-2 inhibition through SU5416. CONCLUSIONS: Overall, understanding both the effects that biomechanical and biochemical stimuli have on VEGFR-2 activation and angiogenesis is an important factor in developing effective anti-angiogenic therapies. This paper shows that VEGFR-2 can be mechanically activated through strain, which likely contributes to increased angiogenesis in the TME. These proof-of-concept studies show that small molecular inhibitors of VEGFR-2 do not fully prevent angiogenesis in 3D TME models when mechanical strains are introduced.


Assuntos
Neoplasias , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Humanos , Células Endoteliais/metabolismo , Neoplasias/metabolismo , Transdução de Sinais , Microambiente Tumoral , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
4.
J Tissue Eng ; 12: 20417314211055015, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34820113

RESUMO

Among gynecologic malignancies, ovarian cancer (OC) has the poorest survival rate, and its clinical management remains challenging due to the high rate of recurrence and chemoresistance. Improving survival for these patients is critical, although this requires the ability to translate preclinical studies to actual patient care: bench to bedside and back. Our objective was to develop a preclinical model that accurately represents tumor biology and its microenvironment. We utilized SKOV-3, OVCAR-8, and CS-99 cell lines to show that this model was suitable for in vitro assessment of cell proliferation. We tested OC cells independently and in co-culture with cancer associated fibroblasts (CAFs) or immune cells. Additionally, we used patient-derived ovarian carcinoma and carcinosarcoma samples to show that the system maintains the histologic morphology of the primary tissue after 7 days. Moreover, we tested the response to chemotherapy using both cell lines and patient-derived tumor specimens and confirmed that cell death was significantly higher in the treated group compared to the vehicle group. Finally, we immune profiled the 3-D model containing patient tissue after several days in the bioreactor system and revealed that the immune populations are still present. Our data suggest that this model is a suitable preclinical model to aid in research that will ultimately impact the treatment of patients with gynecologic cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...