Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1128500, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37007531

RESUMO

Introduction: The food-borne Gram-negative bacterial pathogen Campylobacter jejuni may cause the acute enterocolitis syndrome campylobacteriosis in infected humans. Given that human C. jejuni infections are rising globally which hold also true for resistance rates against antibiotic compounds such as macrolides and fluoroquinolones frequently prescribed for the treatment of severe infectious enteritis, novel antibiotics-independent therapeutic strategies are needed. Distinct organic acids are well known for their health-beneficial including anti-microbial and immunomodulatory properties. In our present study, we investigated potential pathogen-lowering and anti-inflammatory effects of benzoic acid, butyric acid, caprylic acid, and sorbic acid either alone or in combination during acute murine campylobacteriosis. Methods: Therefore, secondary abiotic IL-10-/- mice were perorally infected with C. jejuni strain 81-176 and subjected to a 4-day-course of respective organic acid treatment. Results and discussion: On day 6 post-infection, mice from the combination cohort displayed slightly lower pathogen loads in the duodenum, but neither in the stomach, ileum nor large intestine. Remarkably, the clinical outcome of C. jejuni induced acute enterocolitis was significantly improved after combined organic acid treatment when compared to the placebo control group. In support, the combinatory organic acid treatment dampened both, macroscopic and microscopic inflammatory sequelae of C. jejuni infection as indicated by less colonic shrinkage and less pronounced histopathological including apoptotic epithelial cell changes in the colon on day 6 post-infection. Furthermore, mice from the combination as compared to placebo cohort exhibited lower numbers of innate and adaptive immune cells such as neutrophilic granulocytes, macrophages, monocytes, and T lymphocytes in their colonic mucosa and lamina propria, respectively, which also held true for pro-inflammatory cytokine secretion in the large intestines and mesenteric lymph nodes. Notably, the anti-inflammatory effects were not restricted to the intestinal tract, but could also be observed systemically given pro-inflammatory mediator concentrations in C. jejuni infected mice from the combination organic acid treatment that were comparable to basal values. In conclusion, our in vivo study provides first evidence that an oral application of distinct organic acids in combination exhibits pronounced anti-inflammatory effects and hence, constitutes a promising novel antibiotics-independent therapeutic strategy in the combat of acute campylobacteriosis.

2.
Microorganisms ; 10(10)2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36296229

RESUMO

Given that human Campylobacter jejuni infections are rising globally and antibiotic treatment is not recommended, infected patients would substantially benefit from alternative therapeutic strategies. Short-chain fatty acids such as butyrate are known for their health benefits, including anti-microbial and anti-inflammatory effects. This prompted us to investigate potential disease-alleviating properties of butyrate treatment during acute murine C. jejuni-induced enterocolitis. Therefore, following gut microbiota depletion IL-10-/- mice were challenged with 109 viable C. jejuni cells by oral gavage and treated with butyrate via the drinking water (22 g/L) starting on day 2 post-infection. As early as day 3 post-infection, butyrate reduced diarrheal severity and frequency in treated mice, whereas on day 6 post-infection, gastrointestinal C. jejuni burdens and the overall clinical outcomes were comparable in butyrate- and placebo-treated cohorts. Most importantly, butyrate treatment dampened intestinal pro-inflammatory immune responses given lower colonic numbers of apoptotic cells and neutrophils, less distinct TNF-α secretion in mesenteric lymph nodes and lower IL-6 and MCP-1 concentrations in the ileum. In conclusion, results of our preclinical intervention study provide evidence that butyrate represents a promising candidate molecule for the treatment of acute campylobacteriosis.

3.
Biomolecules ; 13(1)2022 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-36671455

RESUMO

The progressively rising food-borne Campylobacter jejuni infections pose serious health problems and socioeconomic burdens. Given that antibiotic therapy is not recommended for most campylobacteriosis patients, novel treatment options include strategies targeting iron homeostasis that impacts both C. jejuni virulence and inflammatory cell damage caused by toxic oxygen species. In our preclinical intervention study, we tested potential disease-alleviating effects upon prophylactic oral application of the iron-chelating compound desferoxamine (DESF) in acute murine campylobacteriosis. Therefore, microbiota-depleted IL-10-/- mice received synthetic DESF via the drinking water starting seven days before oral infection with C. jejuni strain 81-176. Results revealed that the DESF application did not reduce gastrointestinal pathogen loads but significantly improved the clinical outcome of infected mice at day 6 post-infection. This was accompanied by less pronounced colonic epithelial cell apoptosis, attenuated accumulation of neutrophils in the infected large intestines and abolished intestinal IFN-γ and even systemic MCP-1 secretion. In conclusion, our study highlights the applied murine campylobacteriosis model as suitable for investigating the role of iron in C. jejuni infection in vivo as demonstrated by the disease-alleviating effects of specific iron binding by oral DESF application in acute C. jejuni induced enterocolitis.


Assuntos
Infecções por Campylobacter , Campylobacter jejuni , Enterocolite , Animais , Camundongos , Desferroxamina/farmacologia , Desferroxamina/uso terapêutico , Infecções por Campylobacter/tratamento farmacológico , Enterocolite/tratamento farmacológico , Intestinos
4.
Microorganisms ; 9(4)2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33807493

RESUMO

Campylobacter (C.) jejuni infections pose progressively emerging threats to human health worldwide. Given the rise in antibiotic resistance, antibiotics-independent options are required to fight campylobacteriosis. Since the health-beneficial effects of clove have been known for long, we here analyzed the antimicrobial and immune-modulatory effects of clove essential oil (EO) during acute experimental campylobacteriosis. Therefore, microbiota-depleted interleukin-10 deficient (IL-10-/-) mice were perorally infected with C. jejuni and treated with clove EO via drinking water starting on day 2 post-infection. On day 6 post-infection, lower small- and large-intestinal pathogen loads could be assessed in clove EO as compared to placebo treated mice. Although placebo mice suffered from severe campylobacteriosis as indicated by wasting and bloody diarrhea, clove EO treatment resulted in a better clinical outcome and in less severe colonic histopathological and apoptotic cell responses in C. jejuni infected mice. Furthermore, lower colonic numbers of macrophages, monocytes, and T lymphocytes were detected in mice from the verum versus the placebo cohort that were accompanied by lower intestinal, extra-intestinal, and even systemic proinflammatory cytokine concentrations. In conclusion, our preclinical intervention study provides first evidence that the natural compound clove EO constitutes a promising antibiotics-independent treatment option of acute campylobacteriosis in humans.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...