Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Sci Adv ; 2(9): e1501814, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27652338

RESUMO

Relaxor-based ferroelectrics are prized for their giant electromechanical coupling and have revolutionized sensor and ultrasound applications. A long-standing challenge for piezoelectric materials has been to understand how these ultrahigh electromechanical responses occur when the polar atomic displacements underlying the response are partially broken into polar nanoregions (PNRs) in relaxor-based ferroelectrics. Given the complex inhomogeneous nanostructure of these materials, it has generally been assumed that this enhanced response must involve complicated interactions. By using neutron scattering measurements of lattice dynamics and local structure, we show that the vibrational modes of the PNRs enable giant coupling by softening the underlying macrodomain polarization rotations in relaxor-based ferroelectric PMN-xPT {(1 - x)[Pb(Mg1/3Nb2/3)O3] - xPbTiO3} (x = 30%). The mechanism involves the collective motion of the PNRs with transverse acoustic phonons and results in two hybrid modes, one softer and one stiffer than the bare acoustic phonon. The softer mode is the origin of macroscopic shear softening. Furthermore, a PNR mode and a component of the local structure align in an electric field; this further enhances shear softening, revealing a way to tune the ultrahigh piezoelectric response by engineering elastic shear softening.


Assuntos
Imãs/química , Fenômenos Mecânicos , Nanoestruturas/química , Fônons , Impedância Elétrica , Eletricidade , Microscopia de Força Atômica , Difração de Nêutrons , Titânio/química , Vibração
3.
Phys Rev Lett ; 114(25): 256801, 2015 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-26197138

RESUMO

We report on the use of helium ion implantation to independently control the out-of-plane lattice constant in epitaxial La(0.7)Sr(0.3)MnO(3) thin films without changing the in-plane lattice constants. The process is reversible by a vacuum anneal. Resistance and magnetization measurements show that even a small increase in the out-of-plane lattice constant of less than 1% can shift the metal-insulator transition and Curie temperatures by more than 100 °C. Unlike conventional epitaxy-based strain tuning methods which are constrained not only by the Poisson effect but by the limited set of available substrates, the present study shows that strain can be independently and continuously controlled along a single axis. This permits novel control over orbital populations through Jahn-Teller effects, as shown by Monte Carlo simulations on a double-exchange model. The ability to reversibly control a single lattice parameter substantially broadens the phase space for experimental exploration of predictive models and leads to new possibilities for control over materials' functional properties.

4.
Nat Mater ; 14(7): 657-8, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26099710
5.
Nature ; 515(7528): 535-9, 2014 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-25383524

RESUMO

Phase competition underlies many remarkable and technologically important phenomena in transition metal oxides. Vanadium dioxide (VO2) exhibits a first-order metal-insulator transition (MIT) near room temperature, where conductivity is suppressed and the lattice changes from tetragonal to monoclinic on cooling. Ongoing attempts to explain this coupled structural and electronic transition begin with two alternative starting points: a Peierls MIT driven by instabilities in electron-lattice dynamics and a Mott MIT where strong electron-electron correlations drive charge localization. A key missing piece of the VO2 puzzle is the role of lattice vibrations. Moreover, a comprehensive thermodynamic treatment must integrate both entropic and energetic aspects of the transition. Here we report that the entropy driving the MIT in VO2 is dominated by strongly anharmonic phonons rather than electronic contributions, and provide a direct determination of phonon dispersions. Our ab initio calculations identify softer bonding in the tetragonal phase, relative to the monoclinic phase, as the origin of the large vibrational entropy stabilizing the metallic rutile phase. They further reveal how a balance between higher entropy in the metal and orbital-driven lower energy in the insulator fully describes the thermodynamic forces controlling the MIT. Our study illustrates the critical role of anharmonic lattice dynamics in metal oxide phase competition, and provides guidance for the predictive design of new materials.

6.
Sci Rep ; 4: 7101, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25403911

RESUMO

Eu(2+)-activated phosphors are being widely used in illuminations and displays. Some of these phosphors feature an extremely broad and red-shifted Eu(2+) emission band; however, convincing explanation of this phenomenon is lacking. Here we report a new localized/delocalized emitting state of Eu(2+) ions in a new hexagonal EuAl(2)O(4) phosphor whose Eu(2+) luminescence exhibits a very large bandwidth and an extremely large Stokes shift. At 77 K, two luminescent sites responsible for 550 nm and 645 nm broadband emissions are recognized, while at room temperature only the 645 nm emission band emits. The 645 nm emission exhibits a typical radiative lifetime of 1.27 µs and an unusually large Stokes shift of 0.92 eV. We identify the 645 nm emission as originating from a new type of emitting state whose composition is predominantly that of localized 4f(6)5d character but which also contains a complementary component with delocalized conduction-band-like character. This investigation provides new insights into a unique type of Eu(2+) luminescence in solids whose emission exhibits both a very large bandwidth and an extremely large Stokes shift.

7.
Nano Lett ; 12(12): 6198-205, 2012 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-23145774

RESUMO

A new high-yield method of doping VO(2) nanostructures with aluminum is proposed, which renders possible stabilization of the monoclinic M2 phase in free-standing nanoplatelets in ambient conditions and opens an opportunity for realization of a purely electronic Mott transition field-effect transistor without an accompanying structural transition. The synthesized free-standing M2-phase nanostructures are shown to have very high crystallinity and an extremely sharp temperature-driven metal-insulator transition. A combination of X-ray microdiffraction, micro-Raman spectroscopy, energy-dispersive X-ray spectroscopy, and four-probe electrical measurements allowed thorough characterization of the doped nanostructures. Light is shed onto some aspects of the nanostructure growth, and the temperature-doping level phase diagram is established.

8.
Science ; 334(6060): 1234-9, 2011 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-22144618

RESUMO

X-ray microbeams are an emerging characterization tool with broad implications for science, ranging from materials structure and dynamics, to geophysics and environmental science, to biophysics and protein crystallography. We describe how submicrometer hard x-ray beams with the ability to penetrate tens to hundreds of micrometers into most materials and with the ability to determine local composition, chemistry, and (crystal) structure can characterize buried sample volumes and small samples in their natural or extreme environments. Beams less than 10 nanometers have already been demonstrated, and the practical limit for hard x-ray beam size, the limit to trace-element sensitivity, and the ultimate limitations associated with near-atomic structure determinations are the subject of ongoing research.

9.
Nano Lett ; 11(8): 3065-73, 2011 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-21714518

RESUMO

Current-induced electromechanical actuation enabled by the metal-insulator transition in VO(2) nanoplatelets is demonstrated. The Joule heating by a sufficient current flowing through suspended nanoplatelets results in formation of heterophase domain patterns and is accompanied by nanoplatelet deformation. The actuation action can be achieved in a wide temperature range below the bulk phase transition temperature (68 °C). The observed current-sustained heterophase domain structures should be interpreted as distinct metastable states in free-standing and end-clamped VO(2) samples. We analyze the main prerequisites for the realization of a current-controlled actuator based on the proposed concept.

10.
Nano Lett ; 10(6): 2003-11, 2010 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-20455527

RESUMO

Formation of ferroelastic twin domains in vanadium dioxide (VO(2)) nanosystems can strongly affect local strain distributions, and hence couple to the strain-controlled metal-insulator transition. Here we report polarized-light optical and scanning microwave microscopy studies of interrelated ferroelastic and metal-insulator transitions in single-crystalline VO(2) quasi-two-dimensional (quasi-2D) nanoplatelets (NPls). In contrast to quasi-1D single-crystalline nanobeams, the 2D geometric frustration results in emergence of several possible families of ferroelastic domains in NPls, thus allowing systematic studies of strain-controlled transitions in the presence of geometrical frustration. We demonstrate the possibility of controlling the ferroelastic domain population by the strength of the NPl-substrate interaction, mechanical stress, and by the NPl lateral size. Ferroelastic domain species and domain walls are identified based on standard group-theoretical considerations. Using variable temperature microscopy, we imaged the development of domains of metallic and semiconducting phases during the metal-insulator phase transition and nontrivial strain-driven reentrant domain formation. A long-range reconstruction of ferroelastic structures accommodating metal-insulator domain formation has been observed. These studies illustrate that a complete picture of the phase transitions in single-crystalline and disordered VO(2) structures can be drawn only if both ferroelastic and metal-insulator strain effects are taken into consideration and understood.

11.
Nat Mater ; 2(7): 487-92, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12792647

RESUMO

The crystallographic texture of thin-film coatings plays an essential role in determining such diverse materials properties as wear resistance, recording density in magnetic media and electrical transport in superconductors. Typically, X-ray pole figures provide a macroscopically averaged description of texture, and electron backscattering provides spatially resolved surface measurements. In this study, we have used focused, polychromatic synchrotron X-ray microbeams to penetrate multilayer materials and simultaneously characterize the local structure, orientation and strain tensor of different heteroepitaxial layers with submicrometre resolution. Grain-by-grain microstructural studies of cerium oxide films grown on textured nickel foils reveal two distinct kinetic growth regimes on vicinal surfaces: ledge growth at elevated temperatures and island growth at lower temperatures. In addition, a combinatorial approach reveals that crystallographic tilting associated with these complex interfaces is qualitatively described by a simple geometrical model applicable to brittle films on ductile substrates. The sensitivity of conducting percolation paths to tilt-induced texture improvement is demonstrated.


Assuntos
Óxidos/química , Cério/química , Cristalografia por Raios X , Metais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...