Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 21107, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33273691

RESUMO

Nanoparticles and biological molecules high throughput robust separation is of significant interest in many healthcare and nanoscience industrial applications. In this work, we report an on-chip automatic efficient separation and preconcentration method of dissimilar sized particles within a microfluidic platform using integrated membrane valves controlled microfiltration. Micro-sized E. coli bacteria are sorted from nanoparticles and preconcentrated on a microfluidic chip with six integrated pneumatic valves (sub-100 nL dead volume) using hydrophilic PVDF filter with 0.45 µm pore diameter. The proposed on-chip automatic sorting sequence includes a sample filtration, dead volume washout and retentate backflush in reverse flow. We showed that pulse backflush mode and volume control can dramatically increase microparticles sorting and preconcentration efficiency. We demonstrate that at the optimal pulse backflush regime a separation efficiency of E. coli cells up to 81.33% at a separation throughput of 120.45 µL/min can be achieved. A trimmed mode when the backflush volume is twice smaller than the initial sample results in a preconcentration efficiency of E. coli cells up to 121.96% at a throughput of 80.93 µL/min. Finally, we propose a cyclic on-chip preconcentration method which demonstrates E. coli cells preconcentration efficiency of 536% at a throughput of 1.98 µL/min and 294% preconcentration efficiency at a 10.9 µL/min throughput.


Assuntos
Escherichia coli/isolamento & purificação , Técnicas Analíticas Microfluídicas/métodos , Filtração , Limite de Detecção
2.
Opt Express ; 25(15): 17021-17038, 2017 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-28789200

RESUMO

Optical properties of two dimensional periodic system of the silicon micro-cones are investigated. The metasurface, composed of the silicon tips, shows enhancement of the local optical field. Finite element computer simulations as well as real experiment reveal anomalous optical response of the dielectric metasurface due to excitation of the dielectric resonances. Various electromagnetic resonances are considered in the dielectric cone. The metal-dielectric resonances, which are excited between metal nanoparticles and dielectric cones, are also considered. The resonance local electric field can be much larger than the field in the usual surface plasmon resonances. To investigate local electric field the signal molecules are deposited on the metal nanoparticles. We demonstrate enhancement of the electromagnetic field and Raman signal from the complex of DTNB acid molecules and gold nanoparticles, which are distributed over the metasurface. The metasurfaces composed from the dielectric resonators can have quasi-continuous spectrum and serve as an efficient SERS substrates.

3.
Opt Express ; 24(7): 7133-50, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-27137006

RESUMO

New dielectric SERS metamaterial is investigated. The material consists of periodic dielectric bars deposited on the metal substrate. Computer simulations as well as real experiment reveal extraordinary optical reflectance in the proposed metamaterial due to the excitation of the multiple dielectric resonances. We demonstrate the enhancement of the Raman signal from the complex of 5,5'-dithio-bis-[2-nitrobenzoic acid] molecules and gold nanoparticle (DTNB-Au-NP), which is immobilized on the surface of the barshaped dielectric metamaterial.

4.
Anal Chem ; 76(2): 474-8, 2004 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-14719900

RESUMO

We propose to form nanoelectrode arrays by deposition of the electrocatalyst through lyotropic liquid crystalline templates onto inert electrode support. Whereas Prussian Blue is known to be a superior electrocatalyst in hydrogen peroxide reduction, carbon materials used as electrode support demonstrate only a minor activity. We report on the possibility for nanostructuring of Prussian Blue by its electrochemical deposition through lyotropic liquid crystalline templates, which is noticed from atomic force microscopy images of the resulting surfaces. The resulting Prussian Blue based nanoelectrode arrays in flow injection analysis mode demonstrate a sub-part-per-billion detection limit (1 x 10(-)(8) M) and a linear calibration range starting exactly from the detection limit and extending over 6 orders of magnitude of H(2)O(2) concentrations (1 x 10(-)(8) to 1 x 10(-)(2) M), which are the most advantageous analytical performances in hydrogen peroxide electroanalysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...