Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38847758

RESUMO

Factors responsible for cardiomyocyte proliferation could serve as potential therapeutics to stimulate endogenous myocardial regeneration following insult, such as ischemic injury. A previously published forward genetics approach on cardiomyocyte cell cycle and ploidy led us to the transcription factor, RUNX1. Here, we examine the effect of Runx1 on cardiomyocyte cell cycle during postnatal development and cardiac regeneration using cardiomyocyte-specific gain- and loss-of-function mouse models. RUNX1 is expressed in cardiomyocytes during early postnatal life, decreases to negligible levels by 3 weeks of age, and increases upon myocardial injury, all consistent with observed rates of cardiomyocyte cell cycle activity. Loss of Runx1 transiently stymied cardiomyocyte cell cycle activity during normal postnatal development, a result that corrected itself and did not extend to the context of neonatal heart regeneration. On the other hand, cardiomyocyte-specific Runx1 overexpression resulted in an expansion of diploid cardiomyocytes in uninjured hearts and expansion of 4N cardiomyocytes in the context of neonatal cardiac injury, suggesting Runx1 overexpression is sufficient to induce cardiomyocyte cell cycle responses. Persistent overexpression of Runx1 for >1 month continued to promote cardiomyocyte cell cycle activity resulting in substantial hyperpolyploidization (≥8N DNA content). This persistent cell cycle activation was accompanied by ventricular dilation and adverse remodeling, raising the concern that continued cardiomyocyte cell cycling can have detrimental effects.

2.
Am J Physiol Heart Circ Physiol ; 326(5): H1080-H1093, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38426866

RESUMO

Ischemic heart failure continues to be a highly prevalent disease among westernized countries and there is great interest in understanding the mechanisms preventing or exacerbating disease progression. The literature suggests an important role for the activation of interleukin-13 or interleukin-4 signaling in improving ischemic heart failure outcomes after myocardial infarction in mice. Dupilumab, a neutralizing antibody that inhibits the shared IL13/IL4 receptor subunit IL4Rα, is widely used for conditions such as ectopic dermatitis in humans. If global depletion of IL4Rα influences ischemic heart failure, either in mice or in humans taking dupilumab, is unknown. Here, we investigated the pathophysiological effects of global IL4Rα genetic deletion in adult mice after surgically induced myocardial infarction (MI). We also determined heart failure risk in patients with ischemic heart disease and concomitant usage of dupilumab using the collaborative patient data network TriNetX. Global deletion of IL4Rα results in exacerbated cardiac dysfunction associated with reduced capillary size after myocardial infarction in mice. In agreement with our findings in mice, dupilumab treatment significantly increased the risk of heart failure development in patients with preexisting diagnosis of ischemic heart disease. Our results indicate that systemic IL4Rα signaling is protective against heart failure development in adult mice and human patients specifically following an ischemic event. Thus, the compelling evidence presented hereby advocates for the development of a randomized clinical trial specifically investigating heart failure development after myocardial ischemia in patients taking dupilumab for another underlying condition.NEW & NOTEWORTHY A body of literature suggests a protective role for IL4Rα signaling postmyocardial infarction in mice. Here, our observational study demonstrates that humans taking the IL4Rα neutralizing antibody, dupilumab, have increased incidence of heart failure following an ischemic event. Similarly, global IL4Rα deletion in mice exacerbates heart failure postinfarct. To our knowledge, this is the first study reporting an adverse association in humans of dupilumab use with heart failure following a cardiac ischemic event.


Assuntos
Cardiopatias , Insuficiência Cardíaca , Infarto do Miocárdio , Isquemia Miocárdica , Animais , Humanos , Camundongos , Anticorpos Neutralizantes/efeitos adversos , Anticorpos Neutralizantes/imunologia , Infarto do Miocárdio/genética , Isquemia Miocárdica/genética
3.
JCI Insight ; 9(2)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38051583

RESUMO

There is great interest in identifying signaling pathways that promote cardiac repair after myocardial infarction (MI). Prior studies suggest a beneficial role for IL-13 signaling in neonatal heart regeneration; however, the cell types mediating cardiac regeneration and the extent of IL-13 signaling in the adult heart after injury are unknown. We identified an abundant source of IL-13 and the related cytokine, IL-4, in neonatal cardiac type 2 innate lymphoid cells, but this phenomenon declined precipitously in adult hearts. Moreover, IL-13 receptor deletion in macrophages impaired cardiac function and resulted in larger scars early after neonatal MI. By using a combination of recombinant IL-13 administration and cell-specific IL-13 receptor genetic deletion models, we found that IL-13 signaling specifically to macrophages mediated cardiac functional recovery after MI in adult mice. Single transcriptomics revealed a subpopulation of cardiac macrophages in response to IL-13 administration. These IL-13-induced macrophages were highly efferocytotic and were identified by high IL-1R2 expression. Collectively, we elucidated a strongly proreparative role for IL-13 signaling directly to macrophages following cardiac injury. While this pathway is active in proregenerative neonatal stages, reactivation of macrophage IL-13 signaling is required to promote cardiac functional recovery in adults.


Assuntos
Interleucina-13 , Infarto do Miocárdio , Camundongos , Animais , Interleucina-13/metabolismo , Imunidade Inata , Linfócitos/metabolismo , Macrófagos/metabolismo , Receptores de Interleucina-13/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...