Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 129(19): 195002, 2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36399755

RESUMO

The application of an external 26 Tesla axial magnetic field to a D_{2} gas-filled capsule indirectly driven on the National Ignition Facility is observed to increase the ion temperature by 40% and the neutron yield by a factor of 3.2 in a hot spot with areal density and temperature approaching what is required for fusion ignition [1]. The improvements are determined from energy spectral measurements of the 2.45 MeV neutrons from the D(d,n)^{3}He reaction, and the compressed central core B field is estimated to be ∼4.9 kT using the 14.1 MeV secondary neutrons from the D(T,n)^{4}He reactions. The experiments use a 30 kV pulsed-power system to deliver a ∼3 µs current pulse to a solenoidal coil wrapped around a novel high-electrical-resistivity AuTa_{4} hohlraum. Radiation magnetohydrodynamic simulations are consistent with the experiment.

2.
Opt Express ; 27(7): 9975-9986, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31045145

RESUMO

The propagation of 355-nm, nanosecond pulses in absorbing glasses is investigated for the specific case examples of the broadband absorbing glass SuperGrey and the Ce3+-doped silica glass. The study involves different laser irradiation conditions and material characterization methods to capture the transient material behaviors leading to laser-induced damage. Two damage-initiation mechanisms were identified: (1) melting of the surface as a result of increased temperature; and (2) self-focusing caused by a transient change in the index of refraction. Population of excited states greatly affects both mechanisms by increasing the transient absorption cross section via excited-state absorption and introducing a change of the refractive index to support the formation of graded-index lensing and self-focusing of the beam inside the material. The governing damage-initiation mechanism depends on the thermodynamic properties of the host glass, the electronic structure characteristics of the doped ion, and the laser-spot size.

3.
Opt Express ; 25(13): 15161-15178, 2017 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-28788946

RESUMO

Laser-induced damage with ps pulse widths straddles the transition from intrinsic, multi-photon ionization and avalanche ionization-based ablation with fs pulses to defect-dominated, thermal-based damage with ns pulses. We investigated the morphology of damage for fused silica and silica coatings between 1 ps and 60 ps at 1053 nm. Using calibrated laser-induced damage experiments, in situ imaging, and high-resolution optical microscopy, atomic force microscopy, and scanning electron microscopy, we show that defects play an important role in laser-induced damage down to 1 ps. Three types of damage are observed: ablation craters, ultra-high density pits, and smooth, circular depressions with central pits. For 10 ps and longer, the smooth, circular depressions limit the damage performance of fused silica and silica coatings. The observed high-density pits and material removal down to 3 ps indicate that variations in surface properties limit the laser-induced damage onset to a greater extent than expected below 60 ps. Below 3 ps, damage craters are smoother although there is still evidence as seen by AFM of inhomogeneous laser-induced damage response very near the damage onset. These results show that modeling the damage onset only as a function of pulse width does not capture the convoluted processes leading to laser induced damage with ps pulses. It is necessary to account for the effects of defects on the processes leading to laser-induced damage. The effects of isolated defects or inhomogeneities are most pronounced above 3 ps but are still discernible and possibly important down to the shortest pulse width investigated here.

4.
Opt Express ; 25(13): 15381-15401, 2017 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-28788965

RESUMO

We investigate the role of defects in laser-induced damage of fused silica and of silica coatings produced by e-beam and PIAD processes which are used in damage resistant, multi-layer dielectric, reflective optics. We perform experiments using 1053 nm, 1-60 ps laser pulses with varying beam size, number of shots, and pulse widths in order to understand the characteristics of defects leading to laser-induced damage. This pulse width range spans a transition in mechanisms from intrinsic material ablation for short pulses to defect-dominated damage for longer pulses. We show that for pulse widths as short as 10 ps, laser-induced damage properties of fused silica and silica films are dominated by isolated absorbers. The density of these precursors and their fluence dependence of damage initiation suggest a single photon process for initial energy absorption in these precursors. Higher density precursors that initiate close to the ablation threshold at shorter pulse widths are also observed in fused silica, whose fluence and pulse width scaling suggest a multiphoton initiation process. We also show that these initiated damage sites grow with subsequent laser pulses. We show that scaling laws obtained in more conventional ways depend on the beam size and on the definition of damage for ps pulses. For this reason, coupling scaling laws with the density of precursors are critical to understanding the damage limitations of optics in the ps regime.

5.
Opt Express ; 20(18): 20447-58, 2012 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-23037093

RESUMO

The transient changes in the optical properties of bulk DKDP material arising from its exposure to high temperatures and pressures associated with localized laser energy deposition are investigated. Two methods for initiation of laser-induced breakdown are used, intrinsic, involving relatively large energy deposition brought about by focusing of the laser beam to high intensities, and extrinsic, arising from more localized deposition due to the presence of pre-existing absorbing damage initiating defects. Each method leads to a very different volume of material being affected, which provides for different material thermal relaxation times to help better understand the processes involved.


Assuntos
Transferência de Energia , Lasers , Modelos Químicos , Fosfatos/química , Fosfatos/efeitos da radiação , Compostos de Potássio/química , Compostos de Potássio/efeitos da radiação , Absorção , Simulação por Computador , Cristalização , Doses de Radiação
6.
Opt Lett ; 35(16): 2702-4, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20717429

RESUMO

The optical damage threshold of indentation-induced flaws on fused silica surfaces was explored. Mechanical flaws were characterized by laser damage testing, as well as by optical, secondary electron, and photoluminescence microscopy. Localized polishing, chemical leaching, and the control of indentation morphology were used to isolate the structural features that limit optical damage. A thin defect layer on fracture surfaces, including those smaller than the wavelength of visible light, was found to be the dominant source of laser damage initiation during illumination with 355 nm, 3 ns laser pulses. Little evidence was found that either displaced or densified material or fluence intensification plays a significant role in optical damage at fluences >35 J/cm(2). Elimination of the defect layer was shown to increase the overall damage performance of fused silica optics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...