Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 39(25): 8646-8657, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37314886

RESUMO

Amino acid-capped gold nanoparticles (AuNPs) are a promising tool for various applications, including therapeutics and diagnostics. Most often, amino acids are used to cap AuNPs synthesized with other reducing agents. However, only a few studies have been dedicated to using α-amino acids as reducing and capping agents in AuNPs synthesis. Hence, there are still several gaps in understanding their role in reducing gold salts. Here, we used 20 proteinogenic α-amino acids and one non-proteinogenic α-amino acid in analogy to sodium citrate as reducing and capping agents in synthesizing AuNPs using the Turkevich method. Only four of the twenty-one investigated amino acids have not yielded gold nanoparticles. The shape, size distribution, stability, and optical properties of synthesized nanoparticles were characterized by scanning electron microscopy, differential centrifugal sedimentation, the phase analysis light scattering technique, and UV-vis spectroscopy. The physicochemical characteristics of synthesized AuNPs varied with the amino acid used for the reduction. We proposed that in the initial stage of gold salts reduction most of the used α-amino acids behave similarly to citrate in the Turkevich method. However, their different physicochemical properties resulting from differences in their chemical structures significantly influence the outcomes of reactions.

2.
Beilstein J Nanotechnol ; 14: 552-564, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37179592

RESUMO

The results of comparative studies on the fabrication and characterization of GaN/Ag substrates using pulsed laser deposition (PLD) and magnetron sputtering (MS) and their evaluation as potential substrates for surface-enhanced Raman spectroscopy (SERS) are reported. Ag layers of comparable thicknesses were deposited using PLD and MS on nanostructured GaN platforms. All fabricated SERS substrates were examined regarding their optical properties using UV-vis spectroscopy and regarding their morphology using scanning electron microscopy. SERS properties of the fabricated GaN/Ag substrates were evaluated by measuring SERS spectra of 4-mercaptobenzoic acid molecules adsorbed on them. For all PLD-made GaN/Ag substrates, the estimated enhancement factors were higher than for MS-made substrates with a comparable thickness of the Ag layer. In the best case, the PLD-made GaN/Ag substrate exhibited an approximately 4.4 times higher enhancement factor than the best MS-made substrate.

3.
Beilstein J Nanotechnol ; 14: 190-204, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36761679

RESUMO

The research undertaken aimed to develop an efficient Pt-based catalyst for polymer electrolyte membrane fuel cells (PEMFCs) by using a cost-effective and efficient physical method to deposit platinum nanoparticles (PtNPs) on carbon supports directly from the platinum target. The method developed avoids the chemical functionalization of the carbon substrate and the chemical synthesis of PtNPs during catalyst fabrication. Platinum was deposited on carbon particles at room temperature using a pulsed laser deposition (PLD) system equipped with an ArF excimer laser (λ = 193 nm). The uniform deposition of PtNPs on carbon supports was achieved thanks to a specially designed electromechanical system that mixed the carbon support particles during platinum deposition. In the studies, Vulcan XC-72R carbon black powder, a popular material used as support in the anodes and cathodes of PEMFCs, and a porous carbon material with a high degree of graphitization were used as carbon supports. The best electrochemical measurement results were obtained for Pt deposited on Vulcan XC-72R. The peak power density measured for this material in a membrane electrode assembly (MEA) of a PEMFC (fed with H2/Air) was 0.41 W/cm2, which is a good result compared to 0.57 W/cm2 obtained for commercial 20% Pt Vulcan XC-72R. This result was achieved with three times less Pt catalyst on the carbon support compared to the commercial catalyst, which means that a higher catalyst utilization factor was achieved.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 278: 121312, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-35537259

RESUMO

Surface-enhanced Raman spectroscopy (SERS) and self-assembled monolayer (SAM) approaches were used to investigate the reactions of organic monoradicals with methanol. An attempt was made to generate monoradicals from thiophenols and phenylmethanethiols substituted with bromine, iodine, and nitro groups by irradiation with UV light. Monolayers of radical precursors were deposited on SERS substrates, which were then immersed in methanol and irradiated for 1 and/or 3, 6, 12 and 24 h in a UV photochemical reactor. Pre- and postreaction SERS spectra were obtained by using a confocal Raman microscope and compared with the spectra of expected products of the radical reaction with methanol. Our studies have shown that the efficiency of monoradical generation is highly dependent on the chemical structure of the precursor. In addition, it is shown that both the SERS substrate and experimental conditions used strongly influence the obtained results.

5.
Sensors (Basel) ; 21(22)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34833684

RESUMO

In this article, we present a versatile gas detector that can operate on an unmanned aerial vehicle (UAV) or unmanned ground vehicle (UGV). The device has six electrochemical modules, which can be selected to measure specific gases, according to the mission requirements. The gas intake is realized by a miniaturized vacuum pump, which provides immediate gas distribution to the sensors and improves a fast response. The measurement data are sent wirelessly to the operator's computer, which continuously stores results and presents them in real time. The 2 m tubing allows measurements to be taken in places that are not directly accessible to the UGV or the UAV. While UAVs significantly enhanced the versatility of sensing applications, point gas detection is challenging due to the downwash effect and gas dilution produced by the rotors. In our work, we demonstrated the method of downwash effect reduction at aerial point gas measurements by applying a long-distance probe, which was kept between the UAV and the examined object. Moreover, we developed a safety connection protecting the UAV and sensor in case of accidental jamming of the tubing inside the examined cavity. The methods presented provide an effective gas metering strategy using UAVs.

6.
Molecules ; 26(18)2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34577042

RESUMO

Polyurethane coatings containing copper(II) L-tyrosine and glass microspheres were laser irradiated and underwent electroless metallization. Various sizes of glass microspheres were incorporated into the polyurethane coating matrix in order to examine their effects on surface activation and electroless metallization. The surface of the coatings was activated by using ArF excimer laser emitting ultraviolet radiation (λ = 193 nm) using different number of laser pulses and their fluence. The effects of surface activation and metallization were evaluated mainly based on optical and scanning electron microcopies (SEM), energy-dispersive X-ray spectroscopy (EDX) and photoelectron spectroscopy (XPS). It was found that the presence of glass microspheres enabled the reduction in copper complex content, intensified the ablation process (higher cone-like structures created) and resulted in higher content of copper metallic seeds. On the other hand, the glass microspheres concentration, which was higher for lower size microspheres, was advantageous for obtaining a fully metallized layer.

7.
Int J Mol Sci ; 22(16)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34445159

RESUMO

Polyetheretherketone (PEEK), due to its excellent mechanical and physico-chemical parameters, is an attractive substitute for hard tissues in orthopedic applications. However, PEEK is hydrophobic and lacks surface-active functional groups promoting cell adhesion. Therefore, the PEEK surface must be modified in order to improve its cytocompatibility. In this work, extreme ultraviolet (EUV) radiation and two low-temperature, EUV induced, oxygen and nitrogen plasmas were used for surface modification of polyetheretherketone. Polymer samples were irradiated with 100, 150, and 200 pulses at a 10 Hz repetition rate. The physical and chemical properties of EUV and plasma modified PEEK surfaces, such as changes of the surface topography, chemical composition, and wettability, were examined using atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and goniometry. The human osteoblast-like MG63 cells were used for the analysis of cell viability and cell adhesion on all modified PEEK surfaces. EUV radiation and two types of plasma treatment led to significant changes in surface topography of PEEK, increasing surface roughness and formation of conical structures. Additionally, significant changes in the chemical composition were found and were manifested with the appearance of new functional groups, incorporation of nitrogen atoms up to ~12.3 at.% (when modified in the presence of nitrogen), and doubling the oxygen content up to ~25.7 at.% (when modified in the presence of oxygen), compared to non-modified PEEK. All chemically and physically changed surfaces demonstrated cyto-compatible and non-cytotoxic properties, an enhancement of MG63 cell adhesion was also observed.


Assuntos
Benzofenonas/química , Materiais Biocompatíveis/química , Nitrogênio/química , Osteoblastos/citologia , Oxigênio/química , Gases em Plasma/química , Polímeros/química , Adesão Celular , Linhagem Celular , Humanos , Propriedades de Superfície , Raios Ultravioleta
8.
Materials (Basel) ; 13(19)2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33050110

RESUMO

In this work, the effect of extreme ultraviolet (EUV) radiation and the combination of EUV radiation and low-temperature nitrogen plasma on the physico-chemical properties of polyetheretherketone (PEEK) surfaces were presented. The laser-plasma EUV source based on a double gas puff target was used in this experiment to irradiate PEEK surfaces with nanosecond pulses of EUV radiation and to produce low-temperature plasma through the photoionization of nitrogen with EUV photons. The changes in surface morphology on irradiated polymer samples were examined using atomic force microscopy (AFM) and scanning electron microscopy (SEM). Chemical changes of the PEEK surfaces were analysed using X-ray photoelectron spectroscopy (XPS). EUV radiation and nitrogen plasma treatment caused significant changes in the topography of modified PEEK's surfaces and an increase in their average roughness. Strong chemical decomposition, appearance of new functional groups as well as incorporation of nitrogen atoms up to ~17 at.% on the PEEK's surface were observed.

9.
Beilstein J Nanotechnol ; 11: 141-146, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31976203

RESUMO

Inorganic hollow spheres find a growing number of applications in many fields, including catalysis and solar cells. Hence, a simple fabrication method with a low number of simple steps is desired, which would allow for good control over the structural features and physicochemical properties of titania hollow spheres modified with noble metal nanoparticles. A simple method employing sol-gel coating of nanoparticles with titania followed by controlled silver diffusion was developed and applied for the synthesis of Ag-modified hollow TiO2 spheres. The morphology of the synthesized structures and their chemical composition was investigated using SEM and X-ray photoelectron spectroscopy, respectively. The optical properties of the synthesized structures were characterized using UV-vis spectroscopy. Ag-TiO2 hollow nanostructures with different optical properties were prepared simply by a change of the annealing time in the last fabrication step. The synthesized nanostructures exhibit a broadband optical absorption in the UV-vis range.

10.
Beilstein J Nanotechnol ; 10: 882-893, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31165015

RESUMO

The results of studies on the fabrication and characterization of silver nanoisland films (SNIFs) using pulsed laser deposition (PLD) and the evaluation of these films as potential surface-enhanced Raman scattering (SERS) substrates are reported. The SNIFs with thicknesses in a range of 4.7 ± 0.2 nm to 143.2 ± 0.2 nm were deposited under different conditions on silicon substrates. Size and morphology of the fabricated silver nanoislands mainly depend on the substrate temperature, and number and energy of the laser pulses. SERS properties of the fabricated films were evaluated by measuring SERS spectra of para-mercaptoaniline (pMA) molecules adsorbed on them. SERS enhancement factors are shown to depend on the SNIF morphology, which is modified by changes of the deposition conditions. The highest enhancement factor in the range of 105 was achieved for SNIFs that have oval and circular silver nanoislands with small distances between them.

11.
Beilstein J Nanotechnol ; 10: 1048-1055, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31165031

RESUMO

Surface-enhanced Raman spectroscopy (SERS) is a very promising analytical technique for the detection and identification of trace amounts of analytes. Among the many substrates used in SERS of great interest are nanostructures fabricated using physical methods, such as semicontinuous metal films obtained via electron beam physical vapor deposition. In these studies, we investigate the influence of morphology of semicontinuous silver films on their SERS properties. The morphologies studied ranged from isolated particles through percolated films to almost continuous films. We found that films below the percolation threshold (transition from dielectric-like to metal-like) made of isolated silver structures provided the largest SERS enhancement of 4-aminothiophenol (4-ATP) analyte signals. The substrate closest to the percolation threshold has the SERS signal about four times lower than the highest signal sample.

12.
J Biomater Appl ; 31(10): 1328-1336, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28517978

RESUMO

The aim of present study was to determine the hemocompatibility, cellular response of endothelial cells and bacterial adhesion to a new polyester nanocomposite. The carbon nanoparticle nanocomposite was prepared via in situ polymerization of monomers to obtain material of hardness 55 Sh D similar to polyurethanes used in medical applications, for example, in heart-assisting devices. The carbon nanoparticle-containing polyester exhibits markedly reduced bacterial colonization, as compared to commercially available polyurethanes. Further the nanocomposite possesses markedly improved hemocompatibility, as determined by flow cytometry, and robust endothelialization. Possible explanations for these beneficial properties include surface nanoroughness of carbon nanoparticle-containing nanocomposites and presence of fatty acid sequences within polymer structure.


Assuntos
Materiais Biocompatíveis/química , Carbono/química , Nanocompostos/química , Nanopartículas/química , Poliésteres/química , Aderência Bacteriana , Carbono/metabolismo , Adesão Celular , Escherichia coli , Ácidos Graxos/química , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Teste de Materiais , Nanocompostos/microbiologia , Nanocompostos/toxicidade , Poliésteres/metabolismo , Poliuretanos/química , Propriedades de Superfície
13.
J Biomed Mater Res B Appl Biomater ; 103(1): 151-8, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24801401

RESUMO

The use of porous titanium-based implant materials for bone contact has been gaining ground in recent years. Selective laser melting (SLM) is a rapid prototyping method by which porous implants with highly defined external dimensions and internal architecture can be produced. The coating of porous implants produced by SLM with ceramic layers based on calcium phosphate (CaP) remains relatively unexplored, as does the doping of such coatings with magnesium (Mg) to promote bone formation. In this study, Mg-doped coatings of the CaP types octacalcium phosphate and hydroxyapatite (HA) were deposited on such porous implants using the pulsed laser deposition method. The coated implants were subsequently implanted in a rabbit femoral defect model for 6 months. Uncoated implants served as a reference material. Bone-implant contact and bone volume in the region of interest were evaluated by histopathological techniques using a tri-chromatographic Masson-Goldner staining method and by microcomputed tomography (µCT) analysis of the volume of interest in the vicinity of implants. Histopathological analysis revealed that all implant types integrated directly with surrounding bone with ingrowth of newly formed bone into the pores of the implants. Biocompatibility of all implant types was demonstrated by the absence of inflammatory infiltration by mononuclear cells (lymphocytes), neutrophils, and eosinophils. No osteoclastic or foreign body reaction was observed in the vicinity of the implants. µCT analysis revealed a significant increase in bone volume for implants coated with Mg-doped HA compared to uncoated implants.


Assuntos
Ligas/química , Substitutos Ósseos/química , Fosfatos de Cálcio/química , Materiais Revestidos Biocompatíveis/química , Durapatita/química , Lasers , Teste de Materiais , Titânio/química , Animais , Porosidade , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...