Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 11056, 2024 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744935

RESUMO

Osteosarcoma is the most common malignant bone cancer in pediatric patients. Patients who respond poorly to chemotherapy experience worse clinical outcomes with a high mortality rate. The major challenge is the lack of effective drugs for these patients. To introduce new drugs for clinical approval, preclinical studies based on in vitro models must demonstrate the potency of the tested drugs, enabling the drugs to enter phase 1 clinical trials. Patient-derived cell culture is a promising testing platform for in vitro studies, as they more accurately recapitulate cancer states and genetic profiles compared to cell lines. In the present study, we established patient-derived osteosarcoma cells (PDC) from a patient who had previously been diagnosed with retinoblastoma. We identified a new variant of a germline mutation in the RB1 gene in the tissue of the patient. The biological effects of this PDC were studied to observe whether the cryopreserved PDC retained a feature of fresh PDC. The cryopreserved PDC preserved the key biological effects, including cell growth, invasive capability, migration, and mineralization, that define the conserved phenotypes compared to fresh PDC. From whole genome sequencing analysis of osteosarcoma tissue and patient-derived cells, we found that cryopreserved PDC was a minor population in the origin tissue and was selectively grown under the culture conditions. The cryopreserved PDC has a high resistance to conventional chemotherapy. This study demonstrated that the established cryopreserved PDC has the aggressive characteristics of osteosarcoma, in particular the chemoresistance phenotype that might be used for further investigation in the chemoresistant mechanism of osteosarcoma. In conclusion, the approach we applied for primary cell culture might be a promising method to generate in vitro models for functional testing of osteosarcoma.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Retinoblastoma , Humanos , Osteossarcoma/genética , Osteossarcoma/patologia , Osteossarcoma/tratamento farmacológico , Retinoblastoma/genética , Retinoblastoma/patologia , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Neoplasias Ósseas/tratamento farmacológico , Linhagem Celular Tumoral , Proteínas de Ligação a Retinoblastoma/genética , Proliferação de Células , Mutação em Linhagem Germinativa , Criopreservação , Masculino , Perfilação da Expressão Gênica , Movimento Celular/genética
2.
J Bone Oncol ; 25: 100321, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33072501

RESUMO

BACKGROUND: Abnormality in the DNA methylation process is one of the hallmarks of cancer. Emerging evidence strongly supports the idea that defects in DNA methyl transferases (DNMTs) are involved in tumor development and progression. This alteration has major effects at the transcription level of various cancer-associated genes. METHODS: Expression profiles of DNMT1 were investigated in fresh frozen tissues, patient-derived cells, and formalin-fixed paraffin-embedded tissues using immunoblotting and immunohistochemistry analysis. We also examined an anti-tumor effect of single DNA-hypomethylating agent (decitabine) and a combination of decitabine and chemotherapy in osteosarcoma cell lines. RESULTS: The results showed an overexpression of DNMT1 in most cases compared to normal cells and tissue samples. DNMT1 was also expressed at the same levels in paired primary cells derived from biopsy and post-chemotherapy tissues. Expression patterns of DNMT1 were examined in 77 osteosarcoma patients of whom 82% had positive DNMT1 with an IRS score > 0. Most of the cases expressed low to moderate levels of DNMT1 (IRS range 1-8, median = 2.0). Furthermore, we found that a combination of decitabine and chemotherapy had a synergistic effect in most of the tested osteosarcoma cells at a low dose therapeutic range of decitabine. CONCLUSIONS: Our study revealed DNMT1 expression patterns that indicated potential roles of DNMT1 in osteosarcoma transformation and progression. This finding also suggests the efficacy of a combination therapy of decitabine with chemotherapy for osteosarcoma treatment.

3.
Planta Med ; 83(3-04): 268-276, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27574898

RESUMO

Zingerone, an active compound that is present in cooked ginger, has been claimed to be a bioactive ingredient that holds the potential of preventing and/or treating diseases involving inflammation. In this study, zingerone was used to discover its properties against joint inflammation using interleukin-1ß-induced osteoarthritis in cartilage explant and cell culture models. Zingerone was supplemented into the cartilage explant and cell culture media at different concentrations along with the presence of interleukin-1ß, an inducer of osteoarthritis. Markers indicating cartilage degradation, inflammation, and the signaling molecules involved in the inflammatory induction were investigated. Diacerien, an anti-osteoarthritic drug, was used as a positive control. Zingerone at a concentration of 40 µM reduced the level of matrix metalloproteinase-13 to about 31.95 ± 4.33 % compared with the interleukin-1ß-treated group and halted cartilage explant degradation as indicated by reducing the accumulative release of sulfated glycosaminoglycans by falling to the control concomitantly with an elevation of the remaining contents of uronic acid and collagen in the explant tissues when zingerone was added. In the SW1353 cell line model, zingerone efficiently suppressed the expression of TNF-α, interleukin-6, and interleukin-8 mRNA levels and tended to reduce the levels of both p38 and c-Jun N-terminal kinase phosphorylation. From the results of this study, it can be concluded that zingerone potentially reduced cartilage degradation, which is partially involved in p38 and c-Jun N-terminal kinases of the mitogen activator protein kinase signaling pathway leading to the reduction of proinflammatory cytokine amplification effects and cartilage-degrading enzyme syntheses. This finding supports the contention that ginger holds positive pharmaceutical effects against osteoarthritis.


Assuntos
Cartilagem/efeitos dos fármacos , Cartilagem/metabolismo , Guaiacol/análogos & derivados , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Antraquinonas/farmacologia , Anti-Inflamatórios/farmacologia , Cartilagem/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Glicosaminoglicanos/metabolismo , Guaiacol/farmacologia , Humanos , Interleucinas/metabolismo , Metaloproteinase 13 da Matriz/metabolismo , Articulação Metacarpofalângica/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Osteoartrite/prevenção & controle , RNA Mensageiro/biossíntese , Suínos , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...