Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomech ; 32(12): 1319-29, 1999 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-10569710

RESUMO

Pulsatile flow in abdominal aortic aneurysm (AAA) models has been examined in order to understand the hemodynamics that may contribute to growth of an AAA. The model studies were conducted by experiments (flow visualization and laser Doppler velocimetry) and by numerical simulation using physiologically realistic resting and exercise flow conditions. We characterize the flow for two AAA model shapes and sizes emulating early AAA development through moderate AAA growth (mean and peak Reynolds numbers of 362 < Re(mean) < 1053 and 3308 < Re(peak) < 5696 with Womersley parameter 16.4 < alpha < 21.2). The results of our investigation indicate that AAA flow can be divided into three flow regimes: (i) Attached flow over the entire cycle in small AAAs at resting conditions, (ii) vortex formation and translation in moderate size AAAs at resting conditions, and (iii) vortex formation, translation and turbulence in moderate size AAAs under exercise conditions. The second two regimes are classified in the medical literature as disturbed flow conditions that have been correlated with atherogenesis as well as thrombogenesis. Thus, AAA disturbed hemodynamics may be a contributing factor to AAA growth by accelerating the degeneration of the arterial wall. Our investigation also concluded that vortex development is considerably weaker in an asymmetric AAA. Furthermore, turbulence was not observed in the asymmetric model. Finally, our investigation suggests a new mode of transition to turbulence: vortex ring instability and bursting to turbulence. The transition process depends on a combination of the pulsatile flow conditions and the tube cross-sectional area change.


Assuntos
Aneurisma da Aorta Abdominal/fisiopatologia , Modelos Cardiovasculares , Aneurisma da Aorta Abdominal/etiologia , Fenômenos Biomecânicos , Simulação por Computador , Exercício Físico/fisiologia , Hemodinâmica , Humanos , Fluxo Pulsátil
2.
J Biomech Eng ; 118(3): 326-32, 1996 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-8872254

RESUMO

Presence of a small abdominal aortic aneurysm (AAA) often presents a difficult clinical dilemma--a reparative operation with its inherent risks versus monitoring the growth of the aneurysm, with the accompanying risk of rupture. The risk of rupture is conventionally believed to be a function of the AAA bulge diameter. In this work, we hypothesized that the risk of rupture depends on AAA shape. Because rupture is inevitably linked to stress, membrane theory was used to predict the stresses in the walls of an idealized AAA, using a model which was axisymmetric and fusiform, with the ends merged into straight opened-ended tubes. When the stresses for many different shapes of model AAAs were examined, a number of conclusions became evident: (i) maximum hoop stress typically exceeded maximum meridional stress by a factor of 2 to 3 (ii) the shape of an AAA had a small effect on the meridional stresses and a rather dramatic effect on the hoop stresses, (iii) maximum stress typically occurred near the inflection point of a curve drawn coincident with the AAA wall, and (iv) the maximum stress was a function--not of the bulge diameter---but of the curvatures (i.e. shape) of the AAA wall. This last result suggested that rupture probability should be based on wall curvatures, not on AAA bulge diameter. Because curvatures are not much harder to measure than bulge diameter, this concept may be useful in a clinical setting in order to improve prediction of the likelihood of AAA rupture.


Assuntos
Aneurisma Roto/patologia , Aneurisma da Aorta Abdominal/patologia , Modelos Cardiovasculares , Aneurisma Roto/fisiopatologia , Aneurisma da Aorta Abdominal/fisiopatologia , Hemorreologia , Humanos , Valor Preditivo dos Testes , Prognóstico , Fatores de Risco , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...