Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Immunol ; 208(1): 143-154, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34862258

RESUMO

Somatic hypermutation (SHM) drives the genetic diversity of Ig genes in activated B cells and supports the generation of Abs with increased affinity for Ag. SHM is targeted to Ig genes by their enhancers (diversification activators [DIVACs]), but how the enhancers mediate this activity is unknown. We show using chicken DT40 B cells that highly active DIVACs increase the phosphorylation of RNA polymerase II (Pol II) and Pol II occupancy in the mutating gene with little or no accompanying increase in elongation-competent Pol II or production of full-length transcripts, indicating accumulation of stalled Pol II. DIVAC has similar effect also in human Ramos Burkitt lymphoma cells. The DIVAC-induced stalling is weakly associated with an increase in the detection of ssDNA bubbles in the mutating target gene. We did not find evidence for antisense transcription, or that DIVAC functions by altering levels of H3K27ac or the histone variant H3.3 in the mutating gene. These findings argue for a connection between Pol II stalling and cis-acting targeting elements in the context of SHM and thus define a mechanistic basis for locus-specific targeting of SHM in the genome. Our results suggest that DIVAC elements render the target gene a suitable platform for AID-mediated mutation without a requirement for increasing transcriptional output.


Assuntos
Proteínas Aviárias/metabolismo , Subpopulações de Linfócitos B/imunologia , Linfoma de Burkitt/imunologia , Elementos Facilitadores Genéticos/genética , Imunoglobulinas/metabolismo , RNA Polimerase II/metabolismo , Animais , Diversidade de Anticorpos , Proteínas Aviárias/genética , Linfoma de Burkitt/genética , Galinhas , Citidina Desaminase/genética , Humanos , Imunoglobulinas/genética , Ativação Linfocitária , Mutagênese Sítio-Dirigida , Mutação/genética , RNA Polimerase II/genética , Hipermutação Somática de Imunoglobulina , Transcrição Gênica
2.
J Mol Biol ; 432(7): 2349-2368, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32105731

RESUMO

Recently generated proteomic data provides unprecedented insight into stress granule composition and stands as fruitful ground for further analysis. Stress granules are stress-induced biological assemblies that are of keen interest due to being linked to both long-term cell viability and a variety of protein aggregation-based diseases. Herein, we compile recently published stress granule composition data, formed specifically through heat and oxidative stress, for both mammalian (Homo sapiens) and yeast (Saccharomyces cerevisiae) cells. Interrogation of the data reveals that stress granule proteins are enriched in features that favor protein liquid-liquid phase separation, being highly disordered, soluble, and abundant while maintaining a high level of protein-protein interactions under basal conditions. Furthermore, these "stress granuleomes" are shown to be enriched for multidomained, RNA-binding proteins with increased potential for post-translational modifications. Findings are consistent with the notion that stress granule formation is driven by protein liquid-liquid phase separation. Furthermore, stress granule proteins appear poised near solubility limits while possessing the ability to dynamically alter their phase behavior in response to external threat. Interestingly, several features, such as protein disorder, are more prominent among stress granule proteins that share homologs between yeast and mammalian systems also found within stress-induced foci. We culminate results from our stress granule analysis into novel predictors for granule incorporation and validate the mammalian predictor's performance against multiple types of membraneless condensates and by colocalization microscopy.


Assuntos
Grânulos Citoplasmáticos/metabolismo , Proteínas de Choque Térmico/metabolismo , Organelas/metabolismo , Proteoma/análise , Proteínas de Ligação a RNA/metabolismo , Saccharomyces cerevisiae/metabolismo , Estresse Fisiológico , Células HeLa , Humanos
3.
Eur J Immunol ; 47(6): 993-1001, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28301039

RESUMO

The transcription factor Bach2 is required for germinal center formation, somatic hypermutation (SHM), and class-switch recombination (CSR) of immunoglobulins. SHM and CSR are initiated by activation-induced cytidine deaminase (AID) which has potential to induce human B cell lymphoma. To understand the role of Bach2 in AID-mediated immunoglobulin gene diversification processes, we established a BACH2-deficient DT40 B cell line. We show that in addition to allowing SHM, Bach2 drives immunoglobulin gene conversion (GCV), another AID-dependent antibody gene diversification process. We demonstrate that Bach2 promotes GCV by increasing the expression of AID. Importantly, we found that the regulation of AID is independent of Blimp-1 and that BACH2-deficient cells have altered expression of several genes regulating AID expression, stability and function. Furthermore, re-expression of BACH2 or AID in Bach2KO cells restored the SHM and GCV defects. These results demonstrate that Bach2 has a previously unappreciated role in the production of high-affinity antibodies.


Assuntos
Linfócitos B/imunologia , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Citidina Desaminase/metabolismo , Conversão Gênica , Genes de Imunoglobulinas , Hipermutação Somática de Imunoglobulina , Fatores de Transcrição/genética , Animais , Linfócitos B/metabolismo , Diferenciação Celular , Galinhas , Regulação da Expressão Gênica , Switching de Imunoglobulina , Fatores de Transcrição/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...