Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Compr Rev Food Sci Food Saf ; 22(6): 4670-4697, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37779384

RESUMO

The market for plant proteins is expanding rapidly as the negative impacts of animal agriculture on the environment and resources become more evident. Plant proteins offer competitive advantages in production costs, energy requirements, and sustainability. Conventional plant-protein extraction is water and chemical-intensive, posing environmental concerns. Dry fractionation is an energy-efficient and environmentally friendly process for protein separation, preserving protein's native functionality. Cereals and pulses are excellent sources of plant proteins as they are widely grown worldwide. This paper provides a comprehensive review of the dry fractionation process utilized for different seeds to obtain protein-rich fractions with high purity and functionality. Pretreatments, such as dehulling and defatting, are known to enhance the protein separation efficiency. Factors, such as milling speed, mill classifier speed, feed rate, seed type, and hardness, were crucial for obtaining parent flour of desired particle size distribution during milling. The air classification or electrostatic separation settings are crucial in determining the quality of the separated protein. The cut point in air classification is targeted based on the starch granule size of the seed material. Optimization of these operations, applied to different pulses and seeds, led to higher yields of proteins with higher purity. Dual techniques, such as air classification and electrostatic separation, enhance protein purity. The yield of the protein concentrates can be increased by recycling the coarse fractions. Further research is necessary to improve the quality, purity, and yield of protein concentrates to enable more efficient use of plant proteins to meet global protein demands.


Assuntos
Proteínas de Plantas , Sementes , Grão Comestível , Farinha/análise , Fracionamento Químico/métodos
2.
J Texture Stud ; 53(6): 820-833, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34498266

RESUMO

Increasing teff (Eragrostis tef) consumption has been recorded in recent years due to its gluten-free nature and exceptional nutritional composition. Studies on the particle level that relates to processing and handling of teff flour are limited. The effect of different milling methods (roller mill, pin mill, and hammer mill) on size distribution, shape characteristics, and flowability of teff flour was evaluated. Physical properties (angle of repose, tapped and bulk densities, size distribution, and shape characteristics) and proximate composition were investigated and correlated with flow properties. Flowability was measured in terms of bulk, shear, and dynamic flow properties using the FT4 powder rheometer. Particle size distribution significantly (p < .05) influenced the angle of repose, aeration energy, and wall friction angle while shape characteristics (circularity and aspect ratio) significantly (p < .05) affected the aerated and tapped bulk densities and basic flow energy. Hammer-milled flour had the highest aerated (548.00 kg/m3 ) and tapped bulk densities (804.33 kg/m3 ). Pin-milled flour had the highest compressibility index (38.46%), Hausner ratio (1.62), angle of repose (71.57°), and wall friction angle (25.92° at 3 kPa) indicating poorer flowability. Stability index and specific energy did not vary significantly (p > .05) among the milled flours. Highest basic flow (1,191.03 mJ) and aerated energies (272.32 mJ) were required to induce flow in hammer-milled flour due to greater proportion of large particles. Based on the flow function, all flours fall under the "easy flowing" category, but the pin-milled flour exhibited the poorest flowability.


Assuntos
Eragrostis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...