Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Int J Antimicrob Agents ; 63(2): 107052, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38072170

RESUMO

BACKGROUND: The effect of systemic treatment of ventilator-associated pneumonia (VAP) with telavancin, a semisynthetic lipoglycopeptide with good penetration in vitro biofilms, has not been tested in vivo during mechanical ventilation. This study examined the efficacy of telavancin compared with linezolid against endotracheal tube (ETT) biofilms in a porcine model of methicillin-resistant Staphylococcus aureus (MRSA) VAP. METHODS: VAP was induced in 18 pigs by instilling 107 colony-forming units (CFU/mL) of an MRSA strain susceptible to telavancin and linezolid into each pulmonary lobe. Randomization into three groups was done at pneumonia diagnosis: control (IV glucose 0.5% solution q24); linezolid (10 mg/kg q12) and telavancin groups (22.5 mg/kg q24). After 72 h of MV, data regarding bronchoalveolar lavage (BAL), tracheal aspirate (TA), ETT MRSA biofilm load and thickness measured by scanning electron microscopy were obtained. RESULTS: All 18 pigs completed the study. MRSA was isolated in 100% of ETTs from the control and linezolid groups and in 67% from the telavancin group. Telavancin treatment presented a lower MRSA load compared to the control and linezolid treatments (telavancin median [interquartile range (IQR)] = 1.94 [0.00-5.45], linezolid 3.99 [3.22-4.68] and control 4.93 [4.41-5.15], P = 0.236). Telavancin treatment also resulted in the lowest biofilm thickness according to the SEM (4.04 [2.09-6.00], P < 0.001). We found a positive correlation between ETT and BAL load (rho = 0.511, P = 0.045). CONCLUSIONS: In our VAP model, systemic telavancin treatment reduced ETT MRSA occurrence, load, and biofilm thickness. Our findings may have a bearing on ICU patients' clinical outcomes.


Assuntos
Aminoglicosídeos , Staphylococcus aureus Resistente à Meticilina , Pneumonia Estafilocócica , Pneumonia Associada à Ventilação Mecânica , Animais , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Biofilmes , Intubação Intratraqueal/métodos , Linezolida/farmacologia , Linezolida/uso terapêutico , Lipoglicopeptídeos/uso terapêutico , Pneumonia Estafilocócica/tratamento farmacológico , Pneumonia Associada à Ventilação Mecânica/tratamento farmacológico , Suínos , Vancomicina/farmacologia , Vancomicina/uso terapêutico , Modelos Animais de Doenças
3.
Front Cell Infect Microbiol ; 13: 1142274, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37201119

RESUMO

Introduction: Biofilm production is an important yet currently overlooked aspect of diagnostic microbiology that has implications for antimicrobial stewardship. In this study, we aimed to validate and identify additional applications of the BioFilm Ring Test® (BRT) for Pseudomonas aeruginosa (PA) isolates from patients with bronchiectasis (BE). Materials and methods: Sputa were collected from BE patients who had at least one PA positive culture in the previous year. We processed the sputa to isolate both mucoid and non-mucoid PA, and determined their susceptibility pattern, mucA gene status, and presence of ciprofloxacin mutations in QRDR genes. The Biofilm production index (BPI) was obtained at 5 and 24 hours. Biofilms were imaged using Gram staining. Results: We collected 69 PA isolates, including 33 mucoid and 36 non-mucoid. A BPI value below 14.75 at 5 hours predicted the mucoid PA phenotype with 64% sensitivity and 72% specificity. Conclusion: Overall, our findings suggest that the fitness-cost associated with the mucoid phenotype or ciprofloxacin resistance is shown through a time-dependent BPI profile. The BRT has the potential to reveal biofilm features with clinical implications.


Assuntos
Gestão de Antimicrobianos , Infecções por Pseudomonas , Doenças Respiratórias , Humanos , Biofilmes , Ciprofloxacina/farmacologia , Ciprofloxacina/uso terapêutico , Fenótipo , Pseudomonas aeruginosa/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções por Pseudomonas/diagnóstico , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia
5.
Sci Rep ; 13(1): 3974, 2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36894603

RESUMO

16S rRNA gene profiling, which contains nine hypervariable regions (V1-V9), is the gold standard for identifying taxonomic units by high-throughput sequencing. Microbiome studies combine two or more region sequences (usually V3-V4) to increase the resolving power for identifying bacterial taxa. We compare the resolving powers of V1-V2, V3-V4, V5-V7, and V7-V9 to improve microbiome analyses in sputum samples from patients with chronic respiratory diseases. DNA were isolated from 33 human sputum samples, and libraries were created using a QIASeq screening panel intended for Illumina platforms (16S/ITS; Qiagen Hilden, Germany). The analysis included a mock community as a microbial standard control (ZymoBIOMICS). We used the Deblur algorithm to identify bacterial amplicon sequence variants (ASVs) at the genus level. Alpha diversity was significantly higher for V1-V2, V3-V4, and V5-V7 compared with V7-V9, and significant compositional dissimilarities in the V1-V2 and V7-V9 analyses versus the V3-V4 and V5-V7 analyses. A cladogram confirmed these compositional differences, with the latter two being very similar in composition. The combined hypervariable regions showed significant differences when discriminating between the relative abundances of bacterial genera. The area under the curve revealed that V1-V2 had the highest resolving power for accurately identifying respiratory bacterial taxa from sputum samples. Our study confirms that 16S rRNA hypervariable regions provide significant differences for taxonomic identification in sputum. Comparing the taxa of microbial community standard control with the taxa samples, V1-V2 combination exhibits the most sensitivity and specificity. Thus, while third generation full-length 16S rRNA sequencing platforms become more available, the V1-V2 hypervariable regions can be used for taxonomic identification in sputum.


Assuntos
Bactérias , Microbiota , Humanos , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Microbiota/genética , Sistema Respiratório , Sequenciamento de Nucleotídeos em Larga Escala
6.
J Antimicrob Chemother ; 77(6): 1600-1610, 2022 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-35323912

RESUMO

BACKGROUND: Non-cystic fibrosis bronchiectasis (BE) is a chronic structural lung condition that facilitates chronic colonization by different microorganisms and courses with recurrent respiratory infections and frequent exacerbations. One of the main pathogens involved in BE is Pseudomonas aeruginosa. OBJECTIVES: To determine the molecular mechanisms of resistance and the molecular epidemiology of P. aeruginosa strains isolated from patients with BE. METHODS: A total of 43 strains of P. aeruginosa were isolated from the sputum of BE patients. Susceptibility to the following antimicrobials was analysed: ciprofloxacin, meropenem, imipenem, amikacin, tobramycin, aztreonam, piperacillin/tazobactam, ceftazidime, ceftazidime/avibactam, ceftolozane/tazobactam, cefepime and colistin. The resistance mechanisms present in each strain were assessed by PCR, sequencing and quantitative RT-PCR. Molecular epidemiology was determined by MLST. Phylogenetic analysis was carried out using the eBURST algorithm. RESULTS: High levels of resistance to ciprofloxacin (44.19%) were found. Mutations in the gyrA, gyrB, parC and parE genes were detected in ciprofloxacin-resistant P. aeruginosa strains. The number of mutated QRDR genes was related to increased MIC. Different ß-lactamases were detected: blaOXA50, blaGES-2, blaIMI-2 and blaGIM-1. The aac(3)-Ia, aac(3)-Ic, aac(6″)-Ib and ant(2″)-Ia genes were associated with aminoglycoside-resistant strains. The gene expression analysis showed overproduction of the MexAB-OprM efflux system (46.5%) over the other efflux system. The most frequently detected clones were ST619, ST676, ST532 and ST109. CONCLUSIONS: Resistance to first-line antimicrobials recommended in BE guidelines could threaten the treatment of BE and the eradication of P. aeruginosa, contributing to chronic infection.


Assuntos
Bronquiectasia , Infecções por Pseudomonas , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bronquiectasia/tratamento farmacológico , Bronquiectasia/epidemiologia , Ceftazidima , Ciprofloxacina , Humanos , Testes de Sensibilidade Microbiana , Epidemiologia Molecular , Tipagem de Sequências Multilocus , Filogenia , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/epidemiologia , Pseudomonas aeruginosa , Tazobactam , beta-Lactamases/genética , beta-Lactamases/metabolismo
7.
Microorganisms ; 8(1)2020 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-31940771

RESUMO

Rapid identification of the causative agent of hospital-acquired pneumonia (HAP) will allow an earlier administration of a more appropriate antibiotic and could improve the outcome of these patients. The aim of this study was to develop a rapid protocol to identify the main microorganisms involved in HAP by loop-mediated isothermal amplification (LAMP) directly from respiratory samples. First of all, a rapid procedure (<30 min) to extract the DNA from bronchoalveolar lavage (BAL), endotracheal aspirate (EA) or bronchoaspirate (BAS) was set up. A specific LAMP for Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Stenotrophomonas maltophilia and Acinetobacter baumannii was performed with the extracted solution at 65 °C for 30-40 min. Overall, 58 positive BAL and 83 EA/BAS samples were tested. The limits of detection varied according to the microorganism detected. Validation of the LAMP assay with BAL samples showed that the assay was 100% specific and 86.3% sensitive (positive predictive value of 100% and a negative predictive value of 50%) compared with culture. Meanwhile for BAS/EA samples, the assay rendered the following statistical parameters: 100% specificity, 94.6% sensitivity, 100% positive predictive value and 69.2% negative predictive value. The turnaround time including sample preparation and LAMP was circa 1 h. LAMP method may be used to detect the most frequent bacteria causing HAP. It is a simple, cheap, sensitive, specific and rapid assay.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...