Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 29(33): 10297-302, 2013 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-23909643

RESUMO

Nanoparticles (NPs) are generally believed to derive their high reactivity from the inherently large specific surface area. Here we show that this is just the trivial part of a more involved picture. Nanoparticles that carry electric charge are able to generate chemical reaction rates that are even substantially larger than those for similar molecular reactants. This is achieved by Boltzmann accumulation of ionic reactants and the Debye acceleration of their transport. The ensuing unique reactivity features are general for all types of nanoparticles but most prominent for soft ones that exploit the accelerating mechanisms on a 3D level. These features have great potential for exploitation in the catalysis of ionic reactions: the reactivity of sites can be enhanced by increasing the indifferent charge density in the NP body.


Assuntos
Nanopartículas/química , Íons/química , Água
2.
J Phys Chem A ; 117(33): 7643-54, 2013 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-23806009

RESUMO

A framework is presented for understanding the reactivity of nanoparticulate reactants with ions and small molecules. Without loss of generality, the formalism is developed for the case of nanoparticles in contact with environmentally relevant metal ions. In addition to reactive sites, nanoparticles generally carry indifferent electric charge distributed over either their surface (hard particles) or volume (soft particles). The ensuing structure and composition of the electric double layer formed within and/or outside the nanoparticulate reactants substantially govern the dynamics of their association and dissociation with ions in aquatic media. A defining feature of permeable nanoparticles is that their charges and reactive sites are spatially confined inside a particle body with an inner medium whose properties may be substantially different from those of the bulk solution. Consequently, the chemodynamic properties of nanoparticulate complexants may differ significantly from those of simple molecular ligands that are homogeneously dispersed in solution. The various physicochemical processes underlying the dynamic reactivity of nanoparticles toward metal ions are here identified, with a focus on the key role played by conductive-diffusion of both metal ions and nanoparticles, the partitioning of ions within the reactive nanoparticulate volume, and the dynamics of the local association/dissociation processes with the reactive sites. The nature of the rate-limiting step in the overall formation/dissociation of the nanoparticulate complexes is shown to depend on the size of the nanoparticle, its charge density, and the ionic strength of the bulk medium. The consequences of these features are further elaborated within the context of dynamics of metal partitioning at a macroscopic consuming biological interphase in the presence of metal complexing nanoparticles.


Assuntos
Nanopartículas/química , Termodinâmica , Tamanho da Partícula , Eletricidade Estática , Propriedades de Superfície , Água/química
3.
Environ Sci Technol ; 46(19): 10487-98, 2012 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-22934531

RESUMO

The dynamics of metal complexation by small humic substances (fulvic acid and aquatic humic acid, collectively denoted as "fulvic-like substance", FS) are explored within the framework of concepts recently developed for soft nanoparticulate complexants. From a comprehensive collection of published equilibrium and dissociation rate constants for CuFS and NiFS complexes, the association rate constant, ka, is determined as a function of the degree of complexing site occupation, θ. From this large data set, it is shown for the first time that ka is independent of θ. This result has important consequences for finding the nature of the rate limiting step in the association process. The influence of electric effects on the rate of the association process is described, namely (i) the accelerating effect of the negatively charged electrostatic field of FS on the diffusion of metal ions toward it, and (ii) the extent to which metal ions electrostatically accumulate in the counterionic atmosphere of FS. These processes are discussed qualitatively in relation to the derived values of ka. For slowly dehydrating metal ions such as Ni(H2O)6 2+ (dehydration rate constant, kw), ka is expected to derive straight from kw. In contrast, for rapidly dehydrating metal ions such as Cu(H2O)6 2+, transport limitations and electric effects involved in the formation of the precursor outer-sphere associate appear to be important overall rate-limiting factors. This is of great significance for understanding the chemodynamics of humic complexes in the sense that inner-sphere complex formation would not always be the (sole) rate limiting step.


Assuntos
Benzopiranos/química , Cobre/química , Substâncias Húmicas , Nanopartículas/química , Níquel/química , Difusão , Eletrólitos/química , Eletricidade Estática
4.
J Phys Chem A ; 116(25): 6489-96, 2012 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-22324832

RESUMO

The chemodynamics of Cu(II) complexation by humic acid is interpreted in terms of recently developed theory for permeable charged nanoparticles. Two opposing electric effects are operational with respect to the overall rate of association, namely, (i) the conductive enhancement of the diffusion of Cu(2+), expressed by a coefficient f(el), which accounts for the accelerating effect of the negative electrostatic field of the humic particle on the diffusive transport of metal ions toward it, and (ii) the ionic Boltzmann equilibration with the bulk solution, expressed by a factor f(B), which quantifies the extent to which Cu(2+) ions accumulate in the negatively charged particle body. These effects are combined in the probability of outer-sphere metal-site complex formation and the covalent binding of the metal ion by the complexing site (inner-sphere complex formation) as in the classical Eigen mechanism. Overall "experimental" rate constants for CuHA complex formation, k(a), are derived from measurements of the thermodynamic stability constant, K*, and the dissociation rate constant, k(d)*, as a function of the degree of metal ion complexation, θ. The resulting k(a) values are found to be practically independent of θ. They are also compared to theoretical values; at an ionic strength of 0.1 mol dm(-3), the rate of diffusive supply of metal ions toward the particles is comparable to the rate of inner-sphere complex formation, indicating that both processes are significant for the observed overall rate. As the ionic strength decreases, the rate of diffusive supply becomes the predominant rate-limiting process, in contrast with the general assumption made for complexes with small ligands that inner-sphere dehydration is the rate-limiting step. The results presented herein also resolve the discrepancy between experimentally observed and predicted dissociation rate constants based on the above assumption.


Assuntos
Cobre/química , Substâncias Húmicas , Compostos Organometálicos/química , Termodinâmica , Coloides/química , Difusão
5.
Langmuir ; 28(1): 227-34, 2012 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-22126743

RESUMO

The chemodynamics of metal complexes with nanoparticulate complexants can differ significantly from that for simple ligands. The spatial confinement of charged sites and binding sites to the nanoparticulate body impacts on the time scales of various steps in the overall complex formation process. The greater the charge carried by the nanoparticle, the longer it takes to set up the counterion distribution equilibrium with the medium. A z+ metal ion (z > 1) in a 1:1 background electrolyte will accumulate in the counterionic atmosphere around negatively charged simple ions, as well as within/around the body of a soft nanoparticle with negative structural charge. The rate of accumulation is often governed by diffusion and proceeds until Boltzmann partition equilibrium between the charged entity and the ions in the medium is attained. The electrostatic accumulation proceeds simultaneously with outer-sphere and inner-sphere complex formation. The rate of the eventual inner-sphere complex formation is generally controlled by the rate constant of dehydration of the metal ion, k(w). For common transition metal ions with moderate to fast dehydration rates, e.g., Cu(2+), Pb(2+), and Cd(2+), it is shown that the ionic equilibration with the medium may be the slower step and thus rate-limiting in their overall complexation with nanoparticles.


Assuntos
Eletricidade , Nanopartículas Metálicas , Metais/química , Ligantes
6.
Phys Chem Chem Phys ; 13(39): 17606-14, 2011 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-21897934

RESUMO

In a mixture of metal ions and complexes, it is difficult to predict ecological risk without understanding the contribution of each metal species to biouptake. For microorganisms, the rate of uptake (internalization flux) has not only a major influence on the total metal flux but also on the bioavailability of the various metal species and their relative contributions to the total flux. In this paper, the microorganism is considered as a consuming interface, which interacts with the metal ion, M, via the Michaelis-Menten boundary conditions. The contribution of each metal complex to the overall metal flux, in relation to its lability, is examined for a number of important boundary parameters (the equilibrium constant K(a) of metal with transport sites, internalization rate constant k(int) and total transport sites concentration {R}(t)). Computations were performed for Cu(II) complexes, in a multicomponent culture medium for microoganisms. For a one-ligand system, results were acquired using rigorous mathematical expressions, whereas approximate expressions, based on the reaction layer approximation (RLA) and rigorous numerical computations (computer codes MHEDYN and FLUXY), were employed for ligand mixtures. Under the condition of ligand excess, as often found in the natural environment, the relative contribution of each metal species to the total flux is shown to be independent of the boundary conditions. This finding has important implications, including an improved basis for relating the analytical signals of dynamic metal speciation sensors to metal bioavailability.


Assuntos
Cobre/química , Compostos Organometálicos/química , Ligantes , Simulação de Dinâmica Molecular
7.
Langmuir ; 27(8): 4514-9, 2011 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-21410210

RESUMO

A theoretical discussion is presented to describe the formation and dissociation rate constants for metal ion binding by soft nanoparticulate complexants. The well-known framework of the Eigen mechanism for metal ion complexation by simple ligands in aqueous systems is the starting point. Expressions are derived for the rate constants for the intraparticulate individual outer-sphere and inner-sphere association and dissociation steps for the limiting cases of low and high charge densities. The charge density, binding site density, and size of the nanoparticle play crucial roles. The effects of the electrostatic potential and particle radius on the overall complexation reaction are compared with those for simple ligands. The limitations of the proposed approach for nanoparticulate ligands are discussed, and key issues for future developments are identified.


Assuntos
Complexos de Coordenação/química , Modelos Químicos , Nanopartículas/química , Eletricidade Estática , Sítios de Ligação , Cinética
9.
Environ Sci Technol ; 43(19): 7175-83, 2009 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-19848119

RESUMO

Recent progress in understanding the formation/dissociation kinetics of aquatic metal complexes with complexants in different size ranges is evaluated and put in perspective, with suggestions for further studies. The elementary steps in the Eigen mechanism, i.e., diffusion and dehydration of the metal ion, are reviewed and further developed. The (de)protonation of both the ligand and the coordinating metal ion is reconsidered in terms of the consequences for dehydration rates and stabilities of the various outer-sphere complexes. In the nanoparticulate size range, special attention is given to the case of fulvic ligands, for which the impact of electrostatic interactions is especially large. In complexation with colloidal ligands (hard, soft, and combination thereof) the diffusive transport of metal ions is generally a slower step than in the case of complexation with small ligands in a homogeneous solution. The ensuing consequences for the chemodynamics of colloidal complexes are discussed in detail and placed in a generic framework, encompassing the complete range of ligand sizes.


Assuntos
Metais/química , Água/química , Técnicas de Química Analítica , Coloides , Monitoramento Ambiental , Ligantes , Eletricidade Estática
10.
Environ Sci Technol ; 43(19): 7265-9, 2009 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-19848132

RESUMO

Humic substances (HS) play an important role in the reactivity and transport of colloids in natural environments. In particular, the presence of fulvic acids (FA) in natural waters modifies the interactions between inorganic particles and biopolymers and makes difficult to predict their stability with regard to aggregation processes. In this study, Brownian dynamics (BD) modeling is applied to quantify the interactions between negatively charged FA and (i) a positively charged inorganic particle and (ii) a rigid neutral polysaccharide in aqueous solutions. Hematite and schizophyllan are respectively used as model colloids. Modeling the adsorption of FA at the hematite particle surface and on the polysaccharide is based on van der Waals attractive forces and electrostatic interactions. Possible applications of the model, however, are not restricted to this system and any interaction potential or colloidal particle can be considered. The competition between FA adsorption and FA homocoagulation in solution is studied as function of the solution ionic strength. Results show that, under the conditions used, the amount of adsorbed FA is largely controlled by the solution ionic strength. At low ionic strength the amount of adsorbed FA is limited by the electrostatic repulsion between FA at the colloid surfaces and FA monolayers are formed. By increasing the ionic strength the number of adsorbed FA is found to increase. At a sufficiently large ionic strength, however, FA coagulation in solution may strongly compete with FA adsorption at the hematite and polysaccharide surfaces. FA aggregates then adsorb at the colloid surfaces to form extended and porous structures. Results also suggest that FA adsorption and structure of the adsorbed layers are mainly driven by the complex interplay between electrostatic attractive and repulsive interactions.


Assuntos
Benzopiranos/química , Coloides/química , Adsorção , Simulação por Computador , Modelos Químicos , Sizofirano/química
11.
Environ Sci Technol ; 43(15): 5762-8, 2009 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-19731674

RESUMO

Understanding the processes controlling metal biouptake in a mixture of ligands is a requirement for making predictions on dynamic risk assessment in ecotoxicology. In ligand mixtures, the metal uptake flux, due to the dissociation of non labile complexes, can be significantly enhanced by the presence of ligands forming labile complexes, even when the proportions of the latter are very small in the bulk solution. The flux enhancement results from a peculiar kinetic interplay, at the interface, between the labile and non labile species, which influences the lifetime of free metal ion and the reaction layer thickness. An extension of the concept of reaction layer, to multiligand systems, is used here, to explain the physicochemical basis of this flux enhancement and to compute the flux of trace metals in a simple way. This phenomenon is exemplified with four environmentally relevant systems including: (i) simple ligands (Pb-NTA-diglycolate; Cu-OH(-)-CO3(2-)), (ii) fulvic substances (Cu-fulvics-citrate), and (iii) aggregate complexants (Pb-aggregate-CO3(2-)). These examples are typical cases in laboratory experiments, in natural freshwaters and in soil-waters. They show that the flux enhancement effect may occur with all major inorganic and organic environmental complexants. It may be ubiquitous in natural waters or in biological systems and might play an important role in biouptake of toxic or vital metals.


Assuntos
Monitoramento Ambiental/métodos , Metais/química , Algoritmos , Água Doce , Íons , Cinética , Ligantes , Modelos Estatísticos , Modelos Teóricos , Ácido Poliglicólico/química , Poluentes do Solo/química , Propriedades de Superfície , Temperatura , Água/química , Poluentes Químicos da Água/química
12.
Anal Chim Acta ; 646(1-2): 104-10, 2009 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-19523562

RESUMO

Under specific conditions (pH, concentrations), trace metals may form, with environmental inorganic ligands, neutral complexes which, in principle, might diffuse passively through biological membranes or influence the response of (bio)analytical sensors for trace metals based on permeation liquid membrane (PLM). In this study, metal (Cu, Cd, Pb) transport through the planar PLM device was evaluated in the presence of major environmental inorganic ligands such as sulfate, carbonate and chloride under conditions where neutral complexes may be formed (up to 73% of neutral metal complex in the solution). In the presence of sulfate, comparison of predicted and experimental PLM fluxes of Cu, Pb and Cd, suggests that passive transport of neutral sulfate-metal complexes does not occur. This was confirmed by comparing fluxes in the presence and absence of carrier. In the presence of carbonate (for Cd, Cu and Pb) and chloride (for Pb and Cd), however, experimental PLM fluxes were greater than predicted (up to 4 and 25 times in the presence of carbonate and chloride, respectively), but experiments in the absence of carrier in the membrane revealed that no passive transport of neutral complexes (MCl(2) or MCO(3)) occurs through PLM. A possible mechanism is discussed. In parallel to the experiments with PLM, the influence of carbonate on the internalization fluxes of Cu(II) and Pb(II) by the freshwater algae, Chlamydomonas reinhardtii, was assessed. Similarly to the results of PLM, the fluxes of these two metals were larger than expected (based on the free metal ion activity model). Thus, even though PLM and bioaccumulation mechanisms are certainly different, similar unexpected behaviours occur for the metal transport through the PLM and biological membrane of C. reinhardtii, in the presence of carbonate.

13.
Environ Sci Technol ; 43(7): 2206-15, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19452865

RESUMO

An insight into the dynamic aspects of the accumulation process is essential for understanding bioaccumulation as well as effect studies of hydrophobic organic chemicals. This review presents an overview of kinetic studies with organisms (fish, bivalve, crustacean, insect, worm, algae, and protozoan) as well as passive samplers (solid and liquid phase microextraction, semipermeable membrane device, polymer sheet, solid-phase extraction, Chemcatcher, etc.) for the uptake of neutral nonpolar chemicals from the aqueous phase. Information about uptake rates, elimination rates, and 95% equilibration times was collected and analyzed with diffusion based models. The present literature review suggests that the surface to volume ratio appears to be a critical parameter for the uptake rate of the more hydrophobic chemicals both for samplers and organisms. In addition, as a very first approximation, the combination of the first-order kinetic model with the assumption that diffusion through the aqueous boundary layers is rate limiting, gives a reasonable description of the experimental kinetic data. In this way, the presented model might be used to estimate uptake and elimination rate constants of chemicals by organisms or passive samplers.


Assuntos
Poluentes Ambientais/toxicidade , Exposição Ambiental
14.
J Phys Chem A ; 113(24): 6562-71, 2009 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-19459606

RESUMO

Understanding the physical chemical behaviors of each metal species in a solution containing a mixture of ligands is a prerequisite, e.g., for studying metal bioavailability or making predictions on dynamic risk assessment in ecotoxicology. For many years, the reaction layer concept has been used fruitfully due to its simplicity for understanding and making predictions on diffusion/reaction processes. Until now, it has been applied mainly to solutions containing one ligand. Here, we reconsider the fundamentals of this approach and extend it to multiligand systems. It is shown that each metal complex has its own reaction layer (so-called composite reaction layer), which results from the interplay of this particular complex with all the other complexes. Moreover, it is shown that the overall metal flux can be computed by assuming the existence of one single fictitious equivalent reaction layer thickness for the whole of the complexes. This equivalent reaction layer is a mathematical combination of all the composite reaction layers. Simple analytical equations are obtained, which make it possible to readily interpret the role of the various types of metal species in a mixture. The revisited reaction layer approach, denoted as the reaction layer approximation (RLA), is validated by comparing the total metal flux, the individual fluxes of each metal species, and their concentration profiles computed by the RLA with those obtained by a rigorous mathematical approach. The examples of Pb(II) in a modified Aquil medium and of Cu(II) in solutions of nitrilotriacetic acid and N-(2-carboxyphenyl)glycine are treated in detail. In particular, an original result is obtained with the Cu/NTA/N-(2-carboxyphenyl)glycine system, namely an unexpected flux enhancement is observed, which is specific to solutions with ligand mixtures. The corresponding physicochemical mechanism is not readily understood by the rigorous mathematical (either numerical or analytical) solutions due to their involved combination of parameters. On the other hand, we show that, due to the simplicity of the RLA concept, the RLA facilitates elucidation of the physicochemical mechanism underlying complicated processes.


Assuntos
Simulação por Computador , Cobre/química , Glicina/análogos & derivados , Chumbo/química , Ácido Nitrilotriacético/química , Compostos Organometálicos/química , ortoaminobenzoatos/química , Físico-Química , Glicina/química , Ligantes
15.
J Phys Chem A ; 113(24): 6572-80, 2009 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-19459605

RESUMO

The revisited reaction layer approximation (RLA) of metal flux at consuming interfaces in ligand mixtures, discussed in the previous paper (part 1 of this series) is systematically validated by comparison with the results of rigorous numerical simulations. The current paper focuses on conditions under which the total metal flux is enhanced in the ligand (and complex) mixture compared to the case where the individual fluxes of metal complexes are independent of each other. Such an effect is exhibited only in ligand mixtures and results from the kinetic interplay between the various complexes with different labilities. It is exemplified by the Cu/NTA/N-(2-carboxyphenyl)glycine system (see part 1 paper), in which we show that the flux due to the less labile complex (CuNTA) is increased in the presence of a ligand (2-carboxyphenyl)glycine) that forms labile Cu complexes, even when the latter is in negligible proportion in the bulk solution. This paper first explains how the so-called composite and equivalent reaction layer thicknesses computed by RLA can be determined graphically from the concentration profiles of free metal and its complexes, as obtained by rigorous calculations. This approach allows comparison between the latter and RLA predictions. Comparison between these reaction layer thicknesses is then done using the chemical system mentioned above. The mechanism of flux enhancement with this system is studied in detail by following the change of the concentration profiles and reaction layer thicknesses with the increase of concentration of the ligand forming labile complexes. The mechanism of flux enhancement is well explained by the RLA and is validated by the concentration profiles obtained by rigorous numerical simulations. Based on this validation, the RLA is used to predict the conditions of the individual complex labilities and degree of complexation required to get flux enhancement in a two-ligand system. Due to compensation effects between kinetic and thermodynamic factors, a maximum flux enhancement is observed in a specific range of ratios of the lability indices of the two complexes. Flux enhancement might play a significant role in metal uptake in environmental or biological systems and should be considered in data interpretation.


Assuntos
Cobre/química , Glicina/análogos & derivados , Ácido Nitrilotriacético/química , Compostos Organometálicos/química , ortoaminobenzoatos/química , Simulação por Computador , Glicina/química , Cinética , Ligantes , Termodinâmica
16.
Analyst ; 133(7): 954-61, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18575651

RESUMO

Metal toxicity is not related to the total metal ion concentration, but to those of some specific Cu(II) species. The Permeation Liquid Membrane technique is based on the carrier-mediated transport of the test metal across a hydrophobic membrane and enables discrimination between various trace metal species in solution. The present work shows how the labile and inert Cu(II) complexes can be determined selectively, by varying the flow-rate of the test solution, in a flow-through cell. A mathematical model of metal flux through the PLM, based on diffusion-limited transport under steady-state conditions, is described. The model and the performance of the technique were studied in well-defined synthetic solutions containing simple organic hydrophilic ligands forming either inert (nitrilotriacetic acid), or labile complexes with Cu(II) (tartaric acid, malonic acid). The results were compared with theoretical predictions of thermodynamic species distribution in solution. Uncertainties on stability constants for copper speciation calculation were taken into account. The detection limits of the device are discussed. This work demonstrates that the flow-through cell is a reliable tool for copper speciation measurements in natural waters.


Assuntos
Cobre/química , Modelos Químicos , Poluentes Químicos da Água/química , Fracionamento Químico/métodos , Cobre/análise , Difusão , Espectrometria de Massas/métodos , Membranas Artificiais , Permeabilidade , Poluentes Químicos da Água/análise
17.
J Colloid Interface Sci ; 322(2): 660-8, 2008 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-18387618

RESUMO

It is well known that the electrostatic repulsions between charges on neighboring sites decrease the effective charge at the surface of a charged nanoparticle (NP). However, the situation is more complex close to a dielectric discontinuity, since charged sites are interacting not only with their neighbors but also with their own image charges and the image charges of all neighbors. Titrating site positions, solution ionic concentration, dielectric discontinuity effects, and surface charge variations with pH are investigated here using a grand canonical Monte Carlo method. A Tanford and Kirkwood approach is used to calculate the interaction potentials between the discrete charged sites. Homogeneous, heterogeneous, and patch site distributions are considered to reproduce the various titrating site distributions at the solid/solution interface of spherical NPs. By considering Coulomb, salt, and image charges effects, results show that for different ionic concentrations, modifications of the dielectric constant of NPs having homogeneous and heterogeneous site distributions have little effect on their charging process. Thus, the reaction field, due to the presence of image charges, fully counterbalances the Coulomb interactions. This is not the case for patch distributions, where Coulomb interactions are not completely counterbalanced by the reaction field. Application of the present model to pyrogenic silica is also performed and comparison is made with published experimental data of titration curves at various ionic concentrations.

18.
Environ Sci Technol ; 42(6): 2021-7, 2008 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-18409631

RESUMO

Metal flux at consuming interfaces (e.g., sensors or microorganisms) is simulated in environmental multiligand systems using a new numerical code, MHEDYN (Multispecies HEterogeneous DYNamics), based on the lattice Boltzmann method. The attention is focused on the computation of the maximum flux of Cu(II), that is, the flux controlled by diffusion-reaction in solution, irrespective of processes occurring at the interface. In parts III and IV of this series, three types of typical environmental complexants are studied: (a) simple ligands (OH- and C03(2-)), (b) fulvic or humic substances including many sites with broadly varying rate constants, and (c) aggregates including a broad range of sizes and diffusion coefficients. Part III focuses on computations in the presence of simple ligands and fulvic/humic substances separately, and part IV discusses the case of aggregate complexes alone and the mixtures of all ligands in typical natural waters. These papers describe the dynamic contribution of the various types of sites for fulvic and aggregate Cu(II) complexes for the first time. Whenever possible, the metal fluxes computed by MHEDYN are compared with those given by another code, FLUXY, based on a fully different mathematical approach, and very good agreement between these codes is obtained. In all cases, MHEDYN computes the concentration profile of each complex and its time evolution, as well as the steady-state flux and the corresponding contribution of each complex to the flux. The metal fluxes can be computed at a planar consuming surface such as an organism or a sensor surface, in presence of an unlimited number of complexation reactions of the metal M, and for any metal/ligand concentration ratio, with values of the physicochemical parameters ranging over many orders of magnitude.


Assuntos
Cobre/química , Modelos Químicos , Poluentes Químicos da Água/química , Benzopiranos/química , Carbonatos/química , Simulação por Computador , Substâncias Húmicas , Concentração de Íons de Hidrogênio , Hidróxidos/química
19.
Environ Sci Technol ; 42(6): 2028-33, 2008 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-18409632

RESUMO

Metal flux at consuming interfaces (e.g., sensors or microorganisms) is simulated in environmental multiligand systems using a new numerical code, MHEDYN (Multispecies HEterogeneous DYNamics), based on the lattice Boltzmann method. The attention is focused on the computation of the maximum flux (i.e.,the flux controlled by diffusion-reaction in solution) of Cu(II). Part III described flux computation in the presence of simple ligands and fulvic/humic substances. This paper (Part IV) discusses the case of metal complexes formed with aggregates including a broad range of sizes and diffusion coefficients and their mixture with simple and fulvic ligands under typical natural water conditions. This paper describes the dynamic contribution of the various size classes of aggregate Cu(II) complexes for the first time. In two typical waters containing mixtures of ligands, the contribution of aggregates is found to be small, whereas that of fulvics may play a major role, even under pH conditions where the lability of their Cu(II) complexes is low. These results point out the great usefulness of MHEDYN for dynamic speciation in very complex mixtures. In all cases, MHEDYN enables us to compute the concentration profile of each complex and itstime evolution, as well as the steady-state flux and the corresponding contribution of each complex to the flux. Thus, MHEDYN should be very useful for comparing theoretical predictions with experimental measurements of metal bioavailability or of dynamic sensor response in a complete aquatic medium.


Assuntos
Cobre/química , Modelos Químicos , Poluentes Químicos da Água/química , Benzopiranos/química , Carbonatos/química , Hidróxidos/química , Ligantes
20.
Environ Sci Technol ; 41(22): 7609-20, 2007 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-18075065

RESUMO

In the computation of metal flux in aquatic systems, at consuming surfaces like organism membranes, diffusion processes of metal ions, ligands, and complex species, as well as the kinetic and thermodynamic aspects of their chemical interactions, must be considered. The properties of many natural ligands, however, are complicated (formation of successive complexes for simple ligands, polyelectrolytic properties and chemical heterogeneity for macromolecular ligands, large size distribution and fractal structure for suspended aggregates). These properties should be properly modeled to get the correct values of the chemical rate constants and diffusion coefficients required for flux computations. The selection of the most appropriate models and parameter values is far from straightforward. This series of papers discusses the various models and compiles the parameters needed for the three most important types of complexants found in aquatic systems: the small, simple ligands, the fulvic and humic compounds, and the colloidal "particles" or aggregates. In particular, new approaches are presented to compute the rate constants of metal complex formation, with both fulvics/humics and particles/aggregates. The method to include the site distribution of fulvics/humics and the size distribution of particles/aggregates in metal flux computation at consuming interfaces is also discussed in detail. These models and parameters are discussed critically and presented in the same framework, forthe computation of metal flux in presence of any of the above complexants or mixtures. Such parameters, largely spread in the literature, are gathered here and selected specifically for environmental applications. The focus in Part I of the series is on simple ligands and fulvic/humic compounds. Part II deals with particulate and aggregate complexants.


Assuntos
Monitoramento Ambiental/métodos , Substâncias Húmicas , Metais/química , Poluentes do Solo/química , Poluentes da Água/química , Difusão , Concentração de Íons de Hidrogênio , Cinética , Ligantes , Substâncias Macromoleculares , Metais Pesados , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...