Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38473454

RESUMO

In this study, we propose an approach to the synthesis of new biodegradable polymer materials based on renewable raw feedstock (betulin) and derivatives of hydroxycarboxylic acids using a catalyst/catalytic system (γ-Al2O3, γ-Al2O3/TBHP) that is safe for health and the environment. The resulting polymers are linear thermoplastic polymers that undergo collapse upon melting in the presence of atmospheric oxygen. Moreover, these polymers demonstrate non-toxicity towards a range of Gram-positive and Gram-negative bacteria. The polycondensation of betulin with butyl lactate is particularly noteworthy.

2.
J Nat Sci Biol Med ; 8(2): 213-215, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28781490

RESUMO

CONTEXT: Quercetin (QR) is a natural strong antioxidant of the plant origins. It is used for treating conditions of heart and blood vessels including "hardening of arteries" (atherosclerosis), high cholesterol, heart disease, circulation problems, preventing cancer, for treating chronic infections of the prostate, etc. AIMS: The aim of this work was to development and study of an acid-free technique for the preparation of QR from rutin (RT) that requires no use of acids and toxic organic solvents. MATERIALS AND METHODS: For the first time, the subcritical water that serves as a reactant and a solvent were used to obtain QR in good yields starting from RT. High-performance liquid chromatography combined with mass spectrometry was used to determine the quantitative and qualitative compositions of the obtained products. CONCLUSIONS: For the first time, a new acid-free technique was used for the synthesis of natural antioxidant QR from an RT by subcritical water. That way requires no use of acids and/or toxic organic solvents. It has been shown that variation of only one parameter of the process (temperature of subcritical water) allows alteration to the composition of the hydrolysis products. The new method developed for the production of QR in subcritical water is environmentally friendly and faster than conventional hydrolysis methods that use acidic or enzymatic hydrolysis. The proposed technique has a potential for the future development of inexpensive and environmentally friendly technologies for the production of new pharmaceutical plant-based substances.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...