Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gene ; 888: 147762, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37666373

RESUMO

Pancreatic cancer is a notoriously deadly disease with a five-year survival rate around 10 percent. Since early detection of these tumors is difficult, pancreatic cancers are often diagnosed at advanced stages. At this point, genotoxic chemotherapeutics can be used to manage tumor growth. However, side effects of these drugs are severe, limiting the amount of treatment that can be given and resulting in sub-optimal dosing. Thus, there is an urgent need to identify chemo-sensitizing agents that can lower the effective dose of genotoxic agents and as a result reduce the side effects. Here, we use transformed and non-transformed pancreatic cell lines to evaluate DNA repair inhibitors as chemo-sensitizing agents. We used a novel next generation sequencing approach to demonstrate that pancreatic cancer cells have a reduced ability to faithfully repair DNA damage. We then determine the extent that two DNA repair inhibitors (CCS1477, a small molecule inhibitor of p300, and ART558, a small molecule inhibitor of polymerase theta) can exploit this repair deficiency to make pancreatic cancer cells more sensitive to cisplatin, a commonly used genotoxic chemotherapeutic. Immunofluorescence microscopy and cell viability assays show that CCS1477 delayed repair and significantly sensitized pancreatic cancer cells to cisplatin. The increased toxicity was not seen in a non-transformed pancreatic cell line. We also found that while ART558 sensitizes pancreatic cancer cells to cisplatin, it also sensitized non-transformed pancreatic cancer cells.


Assuntos
Antineoplásicos , Neoplasias Pancreáticas , Humanos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Linhagem Celular Tumoral , Reparo do DNA , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Dano ao DNA , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
2.
Elife ; 122023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36692284

RESUMO

Double strand breaks (DSBs) are one of the most lethal DNA lesions in cells. The E6 protein of beta-human papillomavirus (HPV8 E6) impairs two critical DSB repair pathways: homologous recombination (HR) and non-homologous end joining (NHEJ). However, HPV8 E6 only delays DSB repair. How DSBs are repaired in cells with HPV8 E6 remains to be studied. We hypothesize that HPV8 E6 promotes a less commonly used DSB repair pathway, alternative end joining (Alt-EJ). Using CAS9-based Alt-EJ reporters, we show that HPV8 E6 promotes Alt-EJ. Further, using small molecule inhibitors, CRISPR/CAS9 gene knockout, and HPV8 E6 mutant, we find that HPV8 E6 promotes Alt-EJ by binding p300, an acetyltransferase that facilitates DSB repair by HR and NHEJ. At least some of this repair occurs through a subset of Alt-EJ known as polymerase theta dependent end joining. Finally, whole genome sequencing analysis showed HPV8 E6 caused an increased frequency of deletions bearing the microhomology signatures of Alt-EJ. This study fills the knowledge gap of how DSB is repaired in cells with HPV8 E6 and the mutagenic consequences of HPV8 E6 mediated p300 destabilization. Broadly, this study supports the hypothesis that beta-HPV promotes cancer formation by increasing genomic instability.


Assuntos
Quebras de DNA de Cadeia Dupla , Papillomavirus Humano , Humanos , Reparo do DNA por Junção de Extremidades , Recombinação Homóloga , Reparo do DNA
3.
J Vis Exp ; (181)2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35435904

RESUMO

Double strand breaks (DSBs) in DNA are the most cytotoxic type of DNA damage. Because a myriad of insults can result in these lesions (e.g., replication stress, ionizing radiation, unrepaired UV damage), DSBs occur in most cells each day. In addition to cell death, unrepaired DSBs reduce genome integrity and the resulting mutations can drive tumorigenesis. These risks and the prevalence of DSBs motivate investigations into the mechanisms by which cells repair these lesions. Next generation sequencing can be paired with the induction of DSBs by ionizing radiation to provide a powerful tool to precisely define the mutations associated with DSB repair defects. However, this approach requires computationally challenging and cost prohibitive whole genome sequencing to detect the repair of the randomly occurring DSBs associated with ionizing radiation. Rare cutting endonucleases, such as I-Sce1, provide the ability to generate a single DSB, but their recognition sites must be inserted into the genome of interest. As a result, the site of repair is inherently artificial. Recent advances allow guide RNA (sgRNA) to direct a Cas9 endonuclease to any genome locus of interest. This could be applied to the study of DSB repair making next generation sequencing more cost effective by allowing it to be focused on the DNA flanking the Cas9-induced DSB. The goal of the manuscript is to demonstrate the feasibility of this approach by presenting a protocol that can define mutations that stem from the repair of a DSB upstream of the CD4 gene. The protocol can be adapted to determine changes in the mutagenic potential of DSB associated with exogenous factors, such as repair inhibitors, viral protein expression, mutations, and environmental exposures with relatively limited computation requirements. Once an organism's genome has been sequenced, this method can be theoretically employed at any genomic locus and in any cell culture model of that organism that can be transfected. Similar adaptations of the approach could allow comparisons of repair fidelity between different loci in the same genetic background.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Sistemas CRISPR-Cas , Reparo do DNA/genética , Sequenciamento de Nucleotídeos em Larga Escala , Mutação
4.
PLoS Pathog ; 18(2): e1010275, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35148356

RESUMO

Beta human papillomavirus (ß-HPV) are hypothesized to make DNA damage more mutagenic and potentially more carcinogenic. Double strand breaks (DSBs) are the most deleterious DNA lesion. They are typically repaired by homologous recombination (HR) or non-homologous end joining (NHEJ). HR occurs after DNA replication while NHEJ can occur at any point in the cell cycle. HR and NHEJ are not thought to occur in the same cell at the same time. HR is restricted to cells in phases of the cell cycle where homologous templates are available, while NHEJ occurs primarily during G1. ß-HPV type 8 protein E6 (8E6) attenuates both repair pathways. We use a series of immunofluorescence microscopy and flow cytometry experiments to better define the impact of this attenuation. We found that 8E6 causes colocalization of HR factors (RPA70 and RAD51) with an NHEJ factor (activated DNA-PKcs or pDNA-PKcs) at persistent DSBs. 8E6 also causes RAD51 foci to form during G1. The initiation of NHEJ and HR at the same lesion could lead to antagonistic DNA end processing. Further, HR cannot be readily completed in an error-free manner during G1. Both aberrant repair events would cause deletions. To determine if these mutations were occurring, we used next generation sequencing of the 200kb surrounding a CAS9-induced DSB. 8E6 caused a 21-fold increase in deletions. Chemical and genetic inhibition of p300 as well as an 8E6 mutant that is incapable of destabilizing p300 demonstrates that 8E6 is acting via p300 destabilization. More specific chemical inhibitors of DNA repair provided mechanistic insight by mimicking 8E6-induced dysregulation of DNA repair in a virus-free system. Specifically, inhibition of NHEJ causes RAD51 foci to form in G1 and colocalization of RAD51 with pDNA-PKcs.


Assuntos
Alphapapillomavirus/metabolismo , Reparo do DNA por Junção de Extremidades , Proteínas Oncogênicas Virais/metabolismo , Infecções por Papillomavirus/metabolismo , Rad51 Recombinase/metabolismo , Reparo de DNA por Recombinação , Alphapapillomavirus/genética , Ciclo Celular , Linhagem Celular , Quebras de DNA de Cadeia Dupla , Dano ao DNA , Replicação do DNA , Proteína Quinase Ativada por DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Interações entre Hospedeiro e Microrganismos , Humanos , Infecções por Papillomavirus/virologia
5.
Cancers (Basel) ; 12(9)2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32825402

RESUMO

Cutaneous viral infections occur in a background of near continual exposure to environmental genotoxins, like UV radiation in sunlight. Failure to repair damaged DNA is an established driver of tumorigenesis and substantial cellular resources are devoted to repairing DNA lesions. Beta-human papillomaviruses (ß-HPVs) attenuate DNA repair signaling. However, their role in human disease is unclear. Some have proposed that ß-HPV promotes tumorigenesis, while others suggest that ß-HPV protects against skin cancer. Most of the molecular evidence that ß-HPV impairs DNA repair has been gained via characterization of the E6 protein from ß-HPV 8 (ß-HPV 8E6). Moreover, ß-HPV 8E6 hinders DNA repair by binding and destabilizing p300, a transcription factor for multiple DNA repair genes. By reducing p300 availability, ß-HPV 8E6 attenuates a major double strand DNA break (DSB) repair pathway, homologous recombination. Here, ß-HPV 8E6 impairs another DSB repair pathway, non-homologous end joining (NHEJ). Specifically, ß-HPV 8E6 acts by attenuating DNA-dependent protein kinase (DNA-PK) activity, a critical NHEJ kinase. This includes DNA-PK activation and the downstream of steps in the pathway associated with DNA-PK activity. Notably, ß-HPV 8E6 inhibits NHEJ through p300 dependent and independent means. Together, these data expand the known genome destabilizing capabilities of ß-HPV 8E6.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...