Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur Radiol Exp ; 7(1): 52, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37710058

RESUMO

BACKGROUND: Main aim was assessment of regional blood-brain barrier (BBB) function by dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in patients with neuroborreliosis. Secondary aim was to study the correlation of BBB function with biochemical, clinical, and cognitive parameters. METHODS: Regional ethical committee approved this prospective single-center case-control study. Within 1 month after diagnosis of neuroborreliosis, 55 patients underwent DCE-MRI. The patient group consisted of 25 males and 30 females with mean age 58 years, and the controls were 8 males and 7 females with mean age 57 years. Pharmacokinetic compartment modelling with Patlak fit was applied, providing estimates for capillary leakage rate and blood volume fraction. Nine anatomical brain regions were sampled with auto-generated binary masks. Fatigue, severity of clinical symptoms and findings, and cognitive function were assessed in the acute phase and 6 months after treatment. RESULTS: Leakage rates and blood volume fractions were lower in patients compared to controls in the thalamus (p = 0.027 and p = 0.018, respectively), caudate nucleus (p = 0.009 for both), and hippocampus (p = 0.054 and p = 0.009). No correlation of leakage rates with fatigue, clinical disease severity or cognitive function was found. CONCLUSIONS: In neuroborreliosis, leakage rate and blood volume fraction in the thalamus, caudate nucleus, and hippocampus were lower in patients compared to controls. DCE-MRI provided new insight to pathophysiology of neuroborreliosis, and can serve as biomarker of BBB function and regulatory mechanisms of the neurovascular unit in infection and inflammation. RELEVANCE STATEMENT: DCE-MRI provided new insight to pathophysiology of neuroborreliosis, and can serve as biomarker of blood-brain barrier function and regulatory mechanisms of the neurovascular unit in infection and inflammation. KEY POINTS: • Neuroborreliosis is an infection with disturbed BBB function. • Microvessel leakage can be studied with DCE-MRI. • Prospective case-control study showed altered microvessel properties in thalamus, caudate, and hippocampus.


Assuntos
Barreira Hematoencefálica , Substância Cinzenta , Feminino , Masculino , Humanos , Pessoa de Meia-Idade , Barreira Hematoencefálica/diagnóstico por imagem , Estudos de Casos e Controles , Fadiga , Inflamação , Imageamento por Ressonância Magnética
2.
Neurooncol Adv ; 5(1): vdad021, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37066109

RESUMO

Background: Biomechanical tissue properties of glioblastoma tumors are heterogeneous, but the molecular mechanisms involved and the biological implications are poorly understood. Here, we combine magnetic resonance elastography (MRE) measurement of tissue stiffness with RNA sequencing of tissue biopsies to explore the molecular characteristics of the stiffness signal. Methods: MRE was performed preoperatively in 13 patients with glioblastoma. Navigated biopsies were harvested during surgery and classified as "stiff" or "soft" according to MRE stiffness measurements (|G*|norm). Twenty-two biopsies from eight patients were analyzed by RNA sequencing. Results: The mean whole-tumor stiffness was lower than normal-appearing white matter. The surgeon's stiffness evaluation did not correlate with the MRE measurements, which suggests that these measures assess different physiological properties. Pathway analysis of the differentially expressed genes between "stiff" and "soft" biopsies showed that genes involved in extracellular matrix reorganization and cellular adhesion were overexpressed in "stiff" biopsies. Supervised dimensionality reduction identified a gene expression signal separating "stiff" and "soft" biopsies. Using the NIH Genomic Data Portal, 265 glioblastoma patients were divided into those with (n = 63) and without (n = 202) this gene expression signal. The median survival time of patients with tumors expressing the gene signal associated with "stiff" biopsies was 100 days shorter than that of patients not expressing it (360 versus 460 days, hazard ratio: 1.45, P < .05). Conclusion: MRE imaging of glioblastoma can provide noninvasive information on intratumoral heterogeneity. Regions of increased stiffness were associated with extracellular matrix reorganization. An expression signal associated with "stiff" biopsies correlated with shorter survival of glioblastoma patients.

3.
Neuroimage ; 245: 118709, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34848300

RESUMO

BACKGROUND: The ratio of T1-weighted (T1w) and T2-weighted (T2w) magnetic resonance imaging (MRI) images is often used as a proxy measure of cortical myelin. However, the T1w/T2w-ratio is based on signal intensities that are inherently non-quantitative and known to be affected by extrinsic factors. To account for this a variety of processing methods have been proposed, but a systematic evaluation of their efficacy is lacking. Given the dependence of the T1w/T2w-ratio on scanner hardware and T1w and T2w protocols, it is important to ensure that processing pipelines perform well also across different sites. METHODS: We assessed a variety of processing methods for computing cortical T1w/T2w-ratio maps, including correction methods for nonlinear field inhomogeneities, local outliers, and partial volume effects as well as intensity normalisation. These were implemented in 33 processing pipelines which were applied to four test-retest datasets, with a total of 170 pairs of T1w and T2w images acquired on four different MRI scanners. We assessed processing pipelines across datasets in terms of their reproducibility of expected regional distributions of cortical myelin, lateral intensity biases, and test-retest reliability regionally and across the cortex. Regional distributions were compared both qualitatively with histology and quantitatively with two reference datasets, YA-BC and YA-B1+, from the Human Connectome Project. RESULTS: Reproducibility of raw T1w/T2w-ratio distributions was overall high with the exception of one dataset. For this dataset, Spearman rank correlations increased from 0.27 to 0.70 after N3 bias correction relative to the YA-BC reference and from -0.04 to 0.66 after N4ITK bias correction relative to the YA-B1+ reference. Partial volume and outlier corrections had only marginal effects on the reproducibility of T1w/T2w-ratio maps and test-retest reliability. Before intensity normalisation, we found large coefficients of variation (CVs) and low intraclass correlation coefficients (ICCs), with total whole-cortex CV of 10.13% and whole-cortex ICC of 0.58 for the raw T1w/T2w-ratio. Intensity normalisation with WhiteStripe, RAVEL, and Z-Score improved total whole-cortex CVs to 5.91%, 5.68%, and 5.19% respectively, whereas Z-Score and Least Squares improved whole-cortex ICCs to 0.96 and 0.97 respectively. CONCLUSIONS: In the presence of large intensity nonuniformities, bias field correction is necessary to achieve acceptable correspondence with known distributions of cortical myelin, but it can be detrimental in datasets with less intensity inhomogeneity. Intensity normalisation can improve test-retest reliability and inter-subject comparability. However, both bias field correction and intensity normalisation methods vary greatly in their efficacy and may affect the interpretation of results. The choice of T1w/T2w-ratio processing method must therefore be informed by both scanner and acquisition protocol as well as the given study objective. Our results highlight limitations of the T1w/T2w-ratio, but also suggest concrete ways to enhance its usefulness in future studies.


Assuntos
Conectoma , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Adulto , Conjuntos de Dados como Assunto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes
4.
J Biomed Inform ; 112S: 100077, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34417006

RESUMO

Meticulous preoperative planning is an important part of any surgery to achieve high levels of precision and avoid complications. Conventional medical 2D images and their corresponding three-dimensional (3D) reconstructions are the main components of an efficient planning system. However, these systems still use flat screens for visualisation of 3D information, thus losing depth information which is crucial for 3D spatial understanding. Currently, cutting-edge mixed reality systems have shown to be a worthy alternative to provide 3D information to clinicians. In this work, we describe development details of the different steps in the workflow for the clinical use of mixed reality, including results from a qualitative user evaluation and clinical use-cases in laparoscopic liver surgery and heart surgery. Our findings indicate a very high general acceptance of mixed reality devices with our applications and they were consistently rated high for device, visualisation and interaction areas in our questionnaire. Furthermore, our clinical use-cases demonstrate that the surgeons perceived the HoloLens to be useful, recommendable to other surgeons and also provided a definitive answer at a multi-disciplinary team meeting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...