Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Med Chem ; 66(14): 9954-9971, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37436942

RESUMO

Chemotherapy-induced peripheral neuropathy (CIPN) is a major unmet medical need with limited treatment options. Despite different mechanisms of action, diverse chemotherapeutics can cause CIPN through a converged pathway─an active axon degeneration program that engages the dual leucine zipper kinase (DLK). DLK is a neuronally enriched kinase upstream in the MAPK-JNK cascade, and while it is dormant under physiological conditions, DLK mediates a core mechanism for neuronal injury response under stress conditions, making it an attractive target for treatment of neuronal injury and neurodegenerative diseases. We have developed potent, selective, brain penetrant DLK inhibitors with excellent PK and activity in mouse models of CIPN. Lead compound IACS-52825 (22) showed strongly effective reversal of mechanical allodynia in a mouse model of CIPN and was advanced into preclinical development.


Assuntos
Antineoplásicos , Doenças do Sistema Nervoso Periférico , Camundongos , Animais , Neurônios , Sistema de Sinalização das MAP Quinases , Encéfalo/metabolismo , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Antineoplásicos/efeitos adversos , MAP Quinase Quinase Quinases
3.
Prog Neurobiol ; 208: 102181, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34670118

RESUMO

Transposable elements comprise almost half of the mammalian genome. A growing body of evidence suggests that transposable element dysregulation accompanies brain aging and neurodegenerative disorders, and that transposable element activation is neurotoxic. Recent studies have identified links between pathogenic forms of tau, a protein that accumulates in Alzheimer's disease and related "tauopathies," and transposable element-induced neurotoxicity. Starting with transcriptomic analyses, we find that age- and tau-induced transposable element activation occurs in the mouse brain. Among transposable elements that are activated at the RNA level in the context of brain aging and tauopathy, we find that the endogenous retrovirus (ERV) class of retrotransposons is particularly enriched. We show that protein encoded by Intracisternal A-particle, a highly active mouse ERV, is elevated in brains of tau transgenic mice. Using two complementary approaches, we find that brains of tau transgenic mice contain increased DNA copy number of transposable elements, raising the possibility that these elements actively retrotranspose in the context of tauopathy. Taken together, our study lays the groundwork for future mechanistic studies focused on transposable element regulation in the aging mouse brain and in mouse models of tauopathy and provides support for ongoing therapeutic efforts targeting transposable element activation in patients with Alzheimer's disease.


Assuntos
Elementos de DNA Transponíveis , Proteínas tau , Envelhecimento/genética , Animais , Encéfalo/metabolismo , Elementos de DNA Transponíveis/genética , Modelos Animais de Doenças , Humanos , Mamíferos/genética , Mamíferos/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas tau/genética , Proteínas tau/metabolismo
4.
Pain ; 162(10): 2599-2612, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33872235

RESUMO

ABSTRACT: Chemotherapy-induced peripheral neuropathy (CIPN) and chemotherapy-induced cognitive impairments (CICI) are common, often severe neurotoxic side effects of cancer treatment that greatly reduce quality of life of cancer patients and survivors. Currently, there are no Food and Drug Administration-approved agents for the prevention or curative treatment of CIPN or CICI. The dual leucine zipper kinase (DLK) is a key mediator of axonal degeneration that is localized to axons and coordinates the neuronal response to injury. We developed a novel brain-penetrant DLK inhibitor, IACS'8287, which demonstrates potent and highly selective inhibition of DLK in vitro and in vivo. Coadministration of IACS'8287 with the platinum derivative cisplatin prevents mechanical allodynia, loss of intraepidermal nerve fibers in the hind paws, cognitive deficits, and impairments in brain connectivity in mice, all without interfering with the antitumor activity of cisplatin. The protective effects of IACS'8287 are associated with preservation of mitochondrial function in dorsal root ganglion neurons and in brain synaptosomes. In addition, RNA sequencing analysis of dorsal root ganglia reveals modulation of genes involved in neuronal activity and markers for immune cell infiltration by DLK inhibition. These data indicate that CIPN and CICI require DLK signaling in mice, and DLK inhibitors could become an attractive treatment in the clinic when coadministered with cisplatin, and potentially other chemotherapeutic agents, to prevent neurotoxicities as a result of cancer treatment.


Assuntos
Antineoplásicos , Disfunção Cognitiva , Doenças do Sistema Nervoso Periférico , Animais , Antineoplásicos/toxicidade , Modelos Animais de Doenças , Humanos , Zíper de Leucina , Camundongos , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/prevenção & controle , Qualidade de Vida
5.
Annu Rev Med ; 72: 15-28, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-32867590

RESUMO

Genetic studies of autosomal dominant Alzheimer's disease (AD) revealed that ß-amyloid is central to disease pathogenesis. However, amyloid-targeted therapies have generally failed to slow progression in patients with symptomatic disease. This result suggests a transition from an early amyloid-dependent phase to a later amyloid-independent one, during which neurodegeneration occurs and symptoms arise. Microglia, the brain's resident myeloid cells, envelop amyloid and express the majority of genes linked to risk for sporadic late-onset AD. Their activation is associated spatially and temporally with the accumulation of pathological tau. Microglial facilitation of tau pathology may involve apolipoprotein E, the most important genetic risk factor for AD. Once formed, pathological tau spreads between connected neurons, eventually accumulating in the somatic compartment where catastrophic nuclear damage ensues. This emerging understanding of the postamyloid processes leading to neurodegeneration affords the opportunity to develop therapeutics that interrupt this pathological cascade and prevent or delay dementia, even after amyloid deposition.


Assuntos
Doença de Alzheimer/terapia , Peptídeos beta-Amiloides/antagonistas & inibidores , Terapia Genética/métodos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Humanos
6.
Int J Mol Sci ; 21(14)2020 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-32659913

RESUMO

Dual leucine zipper kinase (DLK, Map3k12) is an axonal protein that governs the balance between degeneration and regeneration through its downstream effectors c-jun N-terminal kinase (JNK) and phosphorylated c-jun (p-c-Jun). In peripheral nerves DLK is generally inactive until induced by injury, after which it transmits signals to the nucleus via retrograde transport. Here we report that in contrast to this mode of regulation, in the uninjured adult mouse cerebellum, DLK constitutively drives nuclear p-c-Jun in cerebellar granule neurons, whereas in the forebrain, DLK is similarly expressed and active, but nuclear p-c-Jun is undetectable. When neurodegeneration results from mutant human tau in the rTg4510 mouse model, p-c-Jun then accumulates in neuronal nuclei in a DLK-dependent manner, and the extent of p-c-Jun correlates with markers of synaptic loss and gliosis. This regional difference in DLK-dependent nuclear p-c-Jun accumulation could relate to differing levels of JNK scaffolding proteins, as the cerebellum preferentially expresses JNK-interacting protein-1 (JIP-1), whereas the forebrain contains more JIP-3 and plenty of SH3 (POSH). To characterize the functional differences between constitutive- versus injury-induced DLK signaling, RNA sequencing was performed after DLK inhibition in the cerebellum and in the non-transgenic and rTg4510 forebrain. In all contexts, DLK inhibition reduced a core set of transcripts that are associated with the JNK pathway. Non-transgenic forebrain showed almost no other transcriptional changes in response to DLK inhibition, whereas the rTg4510 forebrain and the cerebellum exhibited distinct differentially expressed gene signatures. In the cerebellum, but not the rTg4510 forebrain, pathway analysis indicated that DLK regulates insulin growth factor-1 (IGF1) signaling through the transcriptional induction of IGF1 binding protein-5 (IGFBP5), which was confirmed and found to be functionally relevant by measuring signaling through the IGF1 receptor. Together these data illuminate the complex multi-functional nature of DLK signaling in the central nervous system (CNS) and demonstrate its role in homeostasis as well as tau-mediated neurodegeneration.


Assuntos
Encéfalo/metabolismo , Encéfalo/fisiologia , Homeostase/fisiologia , MAP Quinase Quinase Quinases/metabolismo , Estresse Fisiológico/fisiologia , Animais , Axônios/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neurônios/fisiologia , Transdução de Sinais/fisiologia , Transcriptoma/fisiologia
7.
Brain Pathol ; 29(4): 485-501, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30506549

RESUMO

Bridging integrator 1 (BIN1) is the most significant late-onset Alzheimer's disease (AD) susceptibility locus identified via genome-wide association studies. BIN1 is an adaptor protein that regulates membrane dynamics in the context of endocytosis and membrane remodeling. An increase in BIN1 expression and changes in the relative levels of alternatively spliced BIN1 isoforms have been reported in the brains of patients with AD. BIN1 can bind to Tau, and an increase in BIN1 expression correlates with Tau pathology. In contrast, the loss of BIN1 expression in cultured cells elevates Aß production and Tau propagation by insfluencing endocytosis and recycling. Here, we show that BIN1 accumulates adjacent to amyloid deposits in vivo. We found an increase in insoluble BIN1 and a striking accrual of BIN1 within and near amyloid deposits in the brains of multiple transgenic models of AD. The peri-deposit aberrant BIN1 localization was conspicuously different from the accumulation of APP and BACE1 within dystrophic neurites. Although BIN1 is highly expressed in mature oligodendrocytes, BIN1 association with amyloid deposits occurred in the absence of the accretion of other oligodendrocyte or myelin proteins. Finally, super-resolution microscopy and immunogold electron microscopy analyses highlight the presence of BIN1 in proximity to amyloid fibrils at the edges of amyloid deposits. These results reveal the aberrant accumulation of BIN1 is a feature associated with AD amyloid pathology. Our findings suggest a potential role for BIN1 in extracellular Aß deposition in vivo that is distinct from its well-characterized function as an adaptor protein in endocytosis and membrane remodeling.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Doença de Alzheimer/patologia , Proteínas Nucleares/metabolismo , Placa Amiloide/patologia , Proteínas Supressoras de Tumor/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Doença de Alzheimer/metabolismo , Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Amiloidose/patologia , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Feminino , Estudo de Associação Genômica Ampla , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurogênese/fisiologia , Proteínas Nucleares/fisiologia , Placa Amiloide/metabolismo , Transdução de Sinais , Proteínas Supressoras de Tumor/fisiologia , Proteínas tau/metabolismo
8.
Proc Natl Acad Sci U S A ; 114(45): E9665-E9674, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29078331

RESUMO

Alzheimer's disease (AD) is a devastating neurodegenerative disorder characterized by pathological brain lesions and a decline in cognitive function. ß-Amyloid peptides (Aß), derived from proteolytic processing of amyloid precursor protein (APP), play a central role in AD pathogenesis. ß-Site APP cleaving enzyme 1 (BACE1), the transmembrane aspartyl protease which initiates Aß production, is axonally transported in neurons and accumulates in dystrophic neurites near cerebral amyloid deposits in AD. BACE1 is modified by S-palmitoylation at four juxtamembrane cysteine residues. S-palmitoylation is a dynamic posttranslational modification that is important for trafficking and function of several synaptic proteins. Here, we investigated the in vivo significance of BACE1 S-palmitoylation through the analysis of knock-in mice with cysteine-to-alanine substitution at the palmitoylated residues (4CA mice). BACE1 expression, as well as processing of APP and other neuronal substrates, was unaltered in 4CA mice despite the lack of BACE1 S-palmitoylation and reduced lipid raft association. Whereas steady-state Aß levels were similar, synaptic activity-induced endogenous Aß production was not observed in 4CA mice. Furthermore, we report a significant reduction of cerebral amyloid burden and BACE1 accumulation in dystrophic neurites in the absence of BACE1 S-palmitoylation in mouse models of AD amyloidosis. Studies in cultured neurons suggest that S-palmitoylation is required for dendritic spine localization and axonal targeting of BACE1. Finally, the lack of BACE1 S-palmitoylation mitigates cognitive deficits in 5XFAD mice. Using transgenic mouse models, these results demonstrate that intrinsic posttranslational S-palmitoylation of BACE1 has a significant impact on amyloid pathogenesis and the consequent cognitive decline.


Assuntos
Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Transtornos da Memória/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Proteínas Amiloidogênicas/metabolismo , Amiloidose/metabolismo , Animais , Axônios/metabolismo , Encéfalo/metabolismo , Modelos Animais de Doenças , Feminino , Lipoilação/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia
9.
Matters (Zur) ; 20172017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29479533

RESUMO

BIN1 is the second most significant Alzheimer's disease (AD) risk factor gene identified through genome-wide association studies. BIN1 is an adaptor protein that can bind to several proteins including c-Myc, clathrin, adaptor protein-2 and dynamin. BIN1 is widely expressed in the brain and peripheral tissue as ubiquitous and tissue-specific alternatively spliced isoforms that regulate membrane dynamics and endocytosis in multiple cell types. The function of BIN1 in the brain and the mechanism(s) by which AD-associated BIN1 alleles increase the risk for the disease are not known. BIN1 has been shown to interact with Tau and two studies reported a positive correlation between BIN1 expression and neurofibrillary tangle pathology in AD. However, an inverse correlation between BIN1 expression and Tau propagation has also been reported. Moreover, there have been conflicting reports on whether BIN1 is present in tangles. A recent study characterized predominant BIN1 expression in mature oligodendrocytes in the gray matter and the white matter in rodent, and the human brain. Here, we have examined BIN1 localization in the brains of patients with AD using immunohistochemistry and immunofluorescence techniques to analyze BIN1 cellular expression in relation to cellular markers and pathological lesions in AD. We report that BIN1 immunoreactivity in human AD is not associated with neurofibrillary tangles or senile plaques. Moreover, our results show that BIN1 is not expressed by resting and activated microglia, astrocytes, or macrophages in human AD. In accordance with a recent report, low-level de novo BIN1 expression can be observed in a subset of neurons in the AD brain. Further investigations are warranted to understand the complex cellular mechanisms underlying the observed correlation between BIN1 expression and the severity of tangle pathology in AD.

10.
Mol Neurodegener ; 11(1): 59, 2016 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-27488240

RESUMO

BACKGROUND: Genome-wide association studies have identified BIN1 within the second most significant susceptibility locus in late-onset Alzheimer's disease (AD). BIN1 undergoes complex alternative splicing to generate multiple isoforms with diverse functions in multiple cellular processes including endocytosis and membrane remodeling. An increase in BIN1 expression in AD and an interaction between BIN1 and Tau have been reported. However, disparate descriptions of BIN1 expression and localization in the brain previously reported in the literature and the lack of clarity on brain BIN1 isoforms present formidable challenges to our understanding of how genetic variants in BIN1 increase the risk for AD. METHODS: In this study, we analyzed BIN1 mRNA and protein levels in human brain samples from individuals with or without AD. In addition, we characterized the BIN1 expression and isoform diversity in human and rodent tissue by immunohistochemistry and immunoblotting using a panel of BIN1 antibodies. RESULTS: Here, we report on BIN1 isoform diversity in the human brain and document alterations in the levels of select BIN1 isoforms in individuals with AD. In addition, we report striking BIN1 localization to white matter tracts in rodent and the human brain, and document that the large majority of BIN1 is expressed in mature oligodendrocytes whereas neuronal BIN1 represents a minor fraction. This predominant non-neuronal BIN1 localization contrasts with the strict neuronal expression and presynaptic localization of the BIN1 paralog, Amphiphysin 1. We also observe upregulation of BIN1 at the onset of postnatal myelination in the brain and during differentiation of cultured oligodendrocytes. Finally, we document that the loss of BIN1 significantly correlates with the extent of demyelination in multiple sclerosis lesions. CONCLUSION: Our study provides new insights into the brain distribution and cellular expression of an important risk factor associated with late-onset AD. We propose that efforts to define how genetic variants in BIN1 elevate the risk for AD would behoove to consider BIN1 function in the context of its main expression in mature oligodendrocytes and the potential for a role of BIN1 in the membrane remodeling that accompanies the process of myelination.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Doença de Alzheimer/metabolismo , Proteínas Nucleares/metabolismo , Oligodendroglia/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Substância Branca/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Neurogênese/genética , Proteínas Nucleares/genética , Proteínas Supressoras de Tumor/genética , Substância Branca/patologia , Proteínas tau/metabolismo
11.
Acta Neuropathol ; 132(2): 235-256, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26993139

RESUMO

Alzheimer's disease (AD) is characterized by amyloid plaques composed of the ß-amyloid (Aß) peptide surrounded by swollen presynaptic dystrophic neurites consisting of dysfunctional axons and terminals that accumulate the ß-site amyloid precursor protein (APP) cleaving enzyme (BACE1) required for Aß generation. The cellular and molecular mechanisms that govern presynaptic dystrophic neurite formation are unclear, and elucidating these processes may lead to novel AD therapeutic strategies. Previous studies suggest Aß may disrupt microtubules, which we hypothesize have a critical role in the development of presynaptic dystrophies. To investigate this further, here we have assessed the effects of Aß, particularly neurotoxic Aß42, on microtubules during the formation of presynaptic dystrophic neurites in vitro and in vivo. Live-cell imaging of primary neurons revealed that exposure to Aß42 oligomers caused varicose and beaded neurites with extensive microtubule disruption, and inhibited anterograde and retrograde trafficking. In brain sections from AD patients and the 5XFAD transgenic mouse model of amyloid pathology, dystrophic neurite halos with BACE1 elevation around amyloid plaques exhibited aberrant tubulin accumulations or voids. At the ultrastructural level, peri-plaque dystrophies were strikingly devoid of microtubules and replete with multi-lamellar vesicles resembling autophagic intermediates. Proteins of the microtubule motors, kinesin and dynein, and other neuronal proteins were aberrantly localized in peri-plaque dystrophies. Inactive pro-cathepsin D also accumulated in peri-plaque dystrophies, indicating reduced lysosomal function. Most importantly, BACE1 accumulation in peri-plaque dystrophies caused increased BACE1 cleavage of APP and Aß generation. Our study supports the hypothesis that Aß induces microtubule disruption in presynaptic dystrophic neurites that surround plaques, thus impairing axonal transport and leading to accumulation of BACE1 and exacerbation of amyloid pathology in AD.


Assuntos
Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Neuritos/patologia , Terminações Pré-Sinápticas/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Ácido Aspártico Endopeptidases/genética , Axônios/patologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Placa Amiloide/patologia
13.
Bioessays ; 37(8): 888-98, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26126792

RESUMO

Neurons have developed elaborate mechanisms for sorting of proteins to their destination in dendrites and axons as well as dynamic local trafficking. Recent evidence suggests that polarized axonal sorting of ß-site converting enzyme 1 (BACE1), a type I transmembrane aspartyl protease involved in Alzheimer's disease (AD) pathogenesis, entails an unusual journey. In hippocampal neurons, BACE1 internalized from dendrites is conveyed in recycling endosomes via unidirectional retrograde transport towards the soma and sorted to axons where BACE1 becomes enriched. In comparison to other transmembrane proteins that undergo transcytosis or elimination in somatodendritic compartment, vectorial transport of internalized BACE1 in dendrites is unique and intriguing. Dysfunction of protein transport contributes to pathogenesis of AD and other neurodegenerative diseases. Therefore, characterization of BACE1 transcytosis is an important addition to the multiple lines of evidence that highlight the crucial role played by endosomal trafficking pathway as well as axonal sorting mechanisms in AD pathogenesis.


Assuntos
Doença de Alzheimer/enzimologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Axônios/enzimologia , Transcitose , Doença de Alzheimer/patologia , Animais , Transporte Axonal , Endocitose , Endossomos/enzimologia , Humanos
15.
Sci Transl Med ; 6(223): 223fs8, 2014 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-24523319

RESUMO

Cell culture and mouse models unravel how the SORLA receptor negatively regulates ß-amyloid (Caglayan et al.).


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Proteínas Relacionadas a Receptor de LDL/metabolismo , Lisossomos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Animais , Humanos
16.
Mol Neurodegener ; 9: 1, 2014 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-24386896

RESUMO

BACKGROUND: BACE1 is one of the two enzymes that cleave amyloid precursor protein to generate Alzheimer's disease (AD) beta amyloid peptides. It is widely believed that BACE1 initiates APP processing in endosomes, and in the brain this cleavage is known to occur during axonal transport of APP. In addition, BACE1 accumulates in dystrophic neurites surrounding brain senile plaques in individuals with AD, suggesting that abnormal accumulation of BACE1 at presynaptic terminals contributes to pathogenesis in AD. However, only limited information is available on BACE1 axonal transport and targeting. RESULTS: By visualizing BACE1-YFP dynamics using live imaging, we demonstrate that BACE1 undergoes bi-directional transport in dynamic tubulo-vesicular carriers along axons in cultured hippocampal neurons and in acute hippocampal slices of transgenic mice. In addition, a subset of BACE1 is present in larger stationary structures, which are active presynaptic sites. In cultured neurons, BACE1-YFP is preferentially targeted to axons over time, consistent with predominant in vivo localization of BACE1 in presynaptic terminals. Confocal analysis and dual-color live imaging revealed a localization and dynamic transport of BACE1 along dendrites and axons in Rab11-positive recycling endosomes. Impairment of Rab11 function leads to a diminution of total and endocytosed BACE1 in axons, concomitant with an increase in the soma. Together, these results suggest that BACE1 is sorted to axons in endosomes in a Rab11-dependent manner. CONCLUSION: Our results reveal novel information on dynamic BACE1 transport in neurons, and demonstrate that Rab11-GTPase function is critical for axonal sorting of BACE1. Thus, we suggest that BACE1 transcytosis in endosomes contributes to presynaptic BACE1 localization.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Transporte Axonal/fisiologia , Axônios/metabolismo , Hipocampo/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Endossomos/metabolismo , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Microscopia Confocal , Neurônios/metabolismo , Técnicas de Cultura de Órgãos
17.
Cell Rep ; 5(6): 1552-63, 2013 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-24373286

RESUMO

Abnormal accumulation of ß-secretase (BACE1) in dystrophic neurites and presynaptic ß-amyloid (Aß) production contribute to Alzheimer's disease pathogenesis. Little, however, is known about BACE1 sorting and dynamic transport in neurons. We investigated BACE1 trafficking in hippocampal neurons using live-cell imaging and selective labeling. We report that transport vesicles containing internalized BACE1 in dendrites undergo exclusive retrograde transport toward the soma, whereas they undergo bidirectional transport in axons. Unidirectional dendritic transport requires Eps15-homology-domain-containing (EHD) 1 and 3 protein function. Furthermore, loss of EHD function compromises dynamic axonal transport and overall BACE1 levels in axons. EHD1/3 colocalize with BACE1 and APP ß-C-terminal fragments in hippocampal mossy fiber terminals, and their depletion in neurons significantly attenuates Aß levels. These results demonstrate unidirectional endocytic transport of a dendritic cargo and reveal a role for EHD proteins in neuronal BACE1 transcytosis and Aß production, processes that are highly relevant for Alzheimer's disease.


Assuntos
Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Transporte Axonal , Proteínas de Transporte/metabolismo , Dendritos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Proteínas de Transporte/genética , Células Cultivadas , Células HEK293 , Células HeLa , Hipocampo/citologia , Hipocampo/metabolismo , Humanos , Camundongos , Transporte Proteico , Proteínas de Transporte Vesicular/genética
18.
Cell Rep ; 5(6): 1536-51, 2013 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-24373285

RESUMO

Alzheimer's disease (AD) is characterized by cerebral deposition of ß-amyloid (Aß) peptides, which are generated from amyloid precursor protein (APP) by ß- and γ-secretases. APP and the secretases are membrane associated, but whether membrane trafficking controls Aß levels is unclear. Here, we performed an RNAi screen of all human Rab-GTPases, which regulate membrane trafficking, complemented with a Rab-GTPase-activating protein screen, and present a road map of the membrane-trafficking events regulating Aß production. We identify Rab11 and Rab3 as key players. Although retromers and retromer-associated proteins control APP recycling, we show that Rab11 controlled ß-secretase endosomal recycling to the plasma membrane and thus affected Aß production. Exome sequencing revealed a significant genetic association of Rab11A with late-onset AD, and network analysis identified Rab11A and Rab11B as components of the late-onset AD risk network, suggesting a causal link between Rab11 and AD. Our results reveal trafficking pathways that regulate Aß levels and show how systems biology approaches can unravel the molecular complexity underlying AD.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , Membrana Celular/metabolismo , Endossomos/metabolismo , Exoma , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Células HeLa , Humanos , Transporte Proteico , Proteólise , RNA Interferente Pequeno/genética , Proteínas rab de Ligação ao GTP/genética , Proteínas rab3 de Ligação ao GTP/genética , Proteínas rab3 de Ligação ao GTP/metabolismo
19.
J Biol Chem ; 288(37): 26955-66, 2013 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-23902769

RESUMO

Alzheimer disease (AD), the leading cause of dementia, is characterized by the accumulation of ß-amyloid peptides (Aß) in senile plaques in the brains of affected patients. Many cellular mechanisms are thought to play important roles in the development and progression of AD. Several lines of evidence point to the dysregulation of Ca(2+) homeostasis as underlying aspects of AD pathogenesis. Moreover, direct roles in the regulation of Ca(2+) homeostasis have been demonstrated for proteins encoded by familial AD-linked genes such as PSEN1, PSEN2, and APP, as well as Aß peptides. Whereas these studies support the hypothesis that disruption of Ca(2+) homeostasis contributes to AD, it is difficult to disentangle the effects of familial AD-linked genes on Aß production from their effects on Ca(2+) homeostasis. Here, we developed a system in which cellular Ca(2+) homeostasis could be directly manipulated to study the effects on amyloid precursor protein metabolism and Aß production. We overexpressed stromal interaction molecule 1 (STIM1) and Orai1, the components of the store-operated Ca(2+) entry pathway, to generate cells with constitutive and store depletion-induced Ca(2+) entry. We found striking effects of Ca(2+) entry induced by overexpression of the constitutively active STIM1(D76A) mutant on amyloid precursor protein metabolism. Specifically, constitutive activation of Ca(2+) entry by expression of STIM1(D76A) significantly reduced Aß secretion. Our results suggest that disruptions in Ca(2+) homeostasis may influence AD pathogenesis directly through the modulation of Aß production.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Canais de Cálcio/metabolismo , Cálcio/metabolismo , Regulação da Expressão Gênica , Sinalização do Cálcio , Ensaio de Imunoadsorção Enzimática , Células HEK293 , Homeostase , Humanos , Proteínas de Membrana/metabolismo , Microscopia de Fluorescência , Proteínas de Neoplasias/metabolismo , Proteína ORAI1 , Molécula 1 de Interação Estromal
20.
J Biol Chem ; 287(29): 24573-84, 2012 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-22654105

RESUMO

Anatomical lesions in Alzheimer disease-affected brains mainly consist of senile plaques, inflammation stigmata, and oxidative stress. The nuclear factor-κB (NF-κB) is a stress-activated transcription factor that is activated around senile plaques. We have assessed whether NF-κB could be differentially regulated at physiological or supraphysiological levels of amyloid ß (Aß) peptides. Under these experimental conditions, we delineated the putative NF-κB-dependent modulation of all cellular participants in Aß production, namely its precursor ßAPP (ß-amyloid precursor protein) and the ß- and γ-secretases, the two enzymatic machines involved in Aß genesis. Under physiological conditions, NF-κB lowers the transcriptional activity of the promoters of ßAPP, ß-secretase (ß-site APP-cleaving enzyme 1, BACE1), and of the four protein components (Aph-1, Pen-2, nicastrin, presenilin-1, or presenilin-2) of the γ-secretase in HEK293 cells. This was accompanied by a reduction of both protein levels and enzymatic activities, thereby ultimately yielding lower amounts of Aß and AICD (APP intracellular domain). In stably transfected Swedish ßAPP-expressing HEK293 cells triggering supraphysiological concentrations of Aß peptides, NF-κB activates the transcription of ßAPP, BACE1, and some of the γ-secretase members and increases protein expression and enzymatic activities, resulting in enhanced Aß production. Our pharmacological approach using distinct NF-κB kinase modulators indicates that both NF-κB canonical and alternative pathways are involved in the control of Aß production. Overall, our data demonstrate that under physiological conditions, NF-κB triggers a repressive effect on Aß production that contributes to maintaining its homeostasis, while NF-κB participates in a degenerative cycle where Aß would feed its own production under pathological conditions.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , NF-kappa B/farmacologia , Secretases da Proteína Precursora do Amiloide/genética , Precursor de Proteína beta-Amiloide/genética , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , Western Blotting , Linhagem Celular , Expressão Gênica/efeitos dos fármacos , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Regiões Promotoras Genéticas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...