Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 4(1): e4259, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19165343

RESUMO

Protein ubiquitination is essential for many events linked to intracellular protein trafficking. We sought to elucidate the possible involvement of the S. cerevisiae deubiquitinating enzyme Ubp2 in transporter and receptor trafficking after we (this study) and others established that affinity purified Ubp2 interacts stably with the E3 ubiquitin ligase Rsp5 and the (ubiquitin associated) UBA domain containing protein Rup1. UBP2 interacts genetically with RSP5, while Rup1 facilitates the tethering of Ubp2 to Rsp5 via a PPPSY motif. Using the uracil permease Fur4 as a model reporter system, we establish a role for Ubp2 in membrane protein turnover. Similar to hypomorphic rsp5 alleles, cells deleted for UBP2 exhibited a temporal stabilization of Fur4 at the plasma membrane, indicative of perturbed protein trafficking. This defect was ubiquitin dependent, as a Fur4 N-terminal ubiquitin fusion construct bypassed the block and restored sorting in the mutant. Moreover, the defect was absent in conditions where recycling was absent, implicating Ubp2 in sorting at the multivesicular body. Taken together, our data suggest a previously overlooked role for Ubp2 as a positive regulator of Rsp5-mediated membrane protein trafficking subsequent to endocytosis.


Assuntos
Endopeptidases/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas de Saccharomyces cerevisiae/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismo , Alelos , Catálise , Membrana Celular/metabolismo , Endocitose , Complexos Endossomais de Distribuição Requeridos para Transporte , Fluoruracila/farmacologia , Fator de Acasalamento , Modelos Genéticos , Proteínas de Transporte de Nucleotídeos/metabolismo , Peptídeos/metabolismo , Ligação Proteica , Transporte Proteico/genética , Saccharomyces cerevisiae , Ubiquitina-Proteína Ligases/metabolismo
2.
Traffic ; 9(5): 755-69, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18298591

RESUMO

Proteins carrying EPS15 homology (EH) domains are present from yeast to mammals. The characterized members of this protein family are all involved in intracellular trafficking, typically endocytosis and endocytic recycling. We focused on two members of this family in Saccharomyces cerevisiae Irs4p and Tax4p, whose functions are less well characterized. We show that the deletion of IRS4 altered the function of a neighboring gene, VPS51, involved in endocytic recycling. The irs4Deltatax4Delta cells complemented for the loss of Vps51p (irs4Deltatax4Delta*) display no defects in endocytosis and endosomal recycling, clearly differentiating these two EH proteins from the other protein family members. Because Irs4p is phosphorylated when autophagy is induced, we studied the potential role of these two proteins in this latter process. We observed a loss of viability upon starvation in irs4Deltatax4Delta* cells because of a delay in bulk autophagy. Irs4p and Tax4p are also required for pexophagy but not for the cytoplasm-to-vacuole pathway. In growing cells, Irs4p and Tax4p colocalized to few cytoplasmic puncta distinct from endosomes and Golgi compartments. In conditions inducing autophagy, Irs4p and Tax4p partially localized to the pre-autophagosomal structure (PAS) and are required to efficiently recruit to the PAS Atg17p, a factor modulating the autophagic response. We propose that Irs4p and Tax4p are two redundant modulators of the autophagic processes acting upstream from Atg17p, possibly in the signaling events leading to the activation of the autophagic machinery in response to starvation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Autofagia/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Endocitose/fisiologia , Endossomos/metabolismo , Deleção de Genes , Proteínas Substratos do Receptor de Insulina , Fenótipo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
3.
Appl Environ Microbiol ; 70(10): 6188-96, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15466566

RESUMO

In this study, stratified patterns of protein synthesis and growth were demonstrated in Pseudomonas aeruginosa biofilms. Spatial patterns of protein synthetic activity inside biofilms were characterized by the use of two green fluorescent protein (GFP) reporter gene constructs. One construct carried an isopropyl-beta-d-thiogalactopyranoside (IPTG)-inducible gfpmut2 gene encoding a stable GFP. The second construct carried a GFP derivative, gfp-AGA, encoding an unstable GFP under the control of the growth-rate-dependent rrnBp(1) promoter. Both GFP reporters indicated that active protein synthesis was restricted to a narrow band in the part of the biofilm adjacent to the source of oxygen. The zone of active GFP expression was approximately 60 microm wide in colony biofilms and 30 microm wide in flow cell biofilms. The region of the biofilm in which cells were capable of elongation was mapped by treating colony biofilms with carbenicillin, which blocks cell division, and then measuring individual cell lengths by transmission electron microscopy. Cell elongation was localized at the air interface of the biofilm. The heterogeneous anabolic patterns measured inside these biofilms were likely a result of oxygen limitation in the biofilm. Oxygen microelectrode measurements showed that oxygen only penetrated approximately 50 microm into the biofilm. P. aeruginosa was incapable of anaerobic growth in the medium used for this investigation. These results show that while mature P. aeruginosa biofilms contain active, growing cells, they can also harbor large numbers of cells that are inactive and not growing.


Assuntos
Biofilmes/crescimento & desenvolvimento , Pseudomonas aeruginosa/fisiologia , Anaerobiose , Reatores Biológicos , Carbenicilina/farmacologia , Meios de Cultura , Genes Reporter , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Microscopia Eletrônica , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/ultraestrutura , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética
4.
Mol Biol Cell ; 15(9): 4203-14, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15215319

RESUMO

In Saccharomyces cerevisiae, deficiencies in the ESCRT machinery trigger the mistargeting of endocytic and biosynthetic ubiquitinated cargoes to the limiting membrane of the vacuole. Surprisingly, impairment of this machinery also leads to the accumulation of various receptors and transporters at the plasma membrane in both yeast and higher eukaryotes. Using the well-characterized yeast endocytic cargo uracil permease (Fur4p), we show here that the apparent stabilization of the permease at the plasma membrane in ESCRT mutants results from an efficient recycling of the protein. Whereas several proteins as well as internalized dyes are known to be recycled in yeast, little is known about the machinery and molecular mechanisms involved. The SNARE protein Snc1p is the only cargo for which the recycling pathway is well characterized. Unlike Snc1p, endocytosed Fur4p did not pass through the Golgi apparatus en route to the plasma membrane. Although ubiquitination of Fur4p is required for its internalization, deubiquitination is not required for its recycling. In an attempt to identify actors in this new recycling pathway, we found an unexpected phenotype associated with loss of function of the Vps class C complex: cells defective for this complex are impaired for recycling of Fur4p, Snc1p, and the lipophilic dye FM4-64. Genetic analyses indicated that these phenotypes were due to the functioning of the Vps class C complex in trafficking both to and from the late endosomal compartment.


Assuntos
Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Biológico Ativo , Compartimento Celular , Membrana Celular/metabolismo , Endossomos/metabolismo , Genes Fúngicos , Complexo de Golgi/metabolismo , Proteínas de Membrana/genética , Modelos Biológicos , Complexos Multiproteicos , Mutação , Proteínas de Transporte de Nucleotídeos/genética , Proteínas de Transporte de Nucleotídeos/metabolismo , Fenótipo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina/metabolismo
5.
Antimicrob Agents Chemother ; 47(1): 317-23, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12499208

RESUMO

The roles of slow antibiotic penetration, oxygen limitation, and low metabolic activity in the tolerance of Pseudomonas aeruginosa in biofilms to killing by antibiotics were investigated in vitro. Tobramycin and ciprofloxacin penetrated biofilms but failed to effectively kill the bacteria. Bacteria in colony biofilms survived prolonged exposure to either 10 micro g of tobramycin ml(-1)or 1.0 micro g of ciprofloxacin ml(-1). After 100 h of antibiotic treatment, during which the colony biofilms were transferred to fresh antibiotic-containing plates every 24 h, the log reduction in viable cell numbers was only 0.49 +/- 0.18 for tobramycin and 1.42 +/- 0.03 for ciprofloxacin. Antibiotic permeation through colony biofilms, indicated by a diffusion cell bioassay, demonstrated that there was no acceleration in bacterial killing once the antibiotics penetrated the biofilms. These results suggested that limited antibiotic diffusion is not the primary protective mechanism for these biofilms. Transmission electron microscopic observations of antibiotic-affected cells showed lysed, vacuolated, and elongated cells exclusively near the air interface in antibiotic-treated biofilms, suggesting a role for oxygen limitation in protecting biofilm bacteria from antibiotics. To test this hypothesis, a microelectrode analysis was performed. The results demonstrated that oxygen penetrated 50 to 90 micro m into the biofilm from the air interface. This oxic zone correlated to the region of the biofilm where an inducible green fluorescent protein was expressed, indicating that this was the active zone of bacterial metabolic activity. These results show that oxygen limitation and low metabolic activity in the interior of the biofilm, not poor antibiotic penetration, are correlated with antibiotic tolerance of this P. aeruginosa biofilm system.


Assuntos
Biofilmes/efeitos dos fármacos , Ciprofloxacina/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Tobramicina/farmacologia , Pseudomonas aeruginosa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...