Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 20039, 2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34625617

RESUMO

We demonstrate the measurement of p-channel silicon-on-insulator quantum dots at liquid helium temperatures by using a radio frequency (rf) reflectometry circuit comprising of two independently tunable GaAs varactors. This arrangement allows observing Coulomb diamonds at 4.2 K under nearly best matching condition and optimal signal-to-noise ratio. We also discuss the rf leakage induced by the presence of the large top gate in MOS nanostructures and its consequence on the efficiency of rf-reflectometry. These results open the way to fast and sensitive readout in multi-gate architectures, including multi qubit platforms.

2.
Sci Rep ; 11(1): 5863, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33712690

RESUMO

Radio-frequency reflectometry techniques are instrumental for spin qubit readout in semiconductor quantum dots. However, a large phase response is difficult to achieve in practice. In this work, we report radio-frequency single electron transistors using physically defined quantum dots in silicon-on-insulator. We study quantum dots which do not have the top gate structure considered to hinder radio frequency reflectometry measurements using physically defined quantum dots. Based on the model which properly takes into account the parasitic components, we precisely determine the gate-dependent device admittance. Clear Coulomb peaks are observed in the amplitude and the phase of the reflection coefficient, with a remarkably large phase signal of ∼45°. Electrical circuit analysis indicates that it can be attributed to a good impedance matching and a detuning from the resonance frequency. We anticipate that our results will be useful in designing and simulating reflectometry circuits to optimize qubit readout sensitivity and speed.

3.
Sci Rep ; 10(1): 22202, 2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33335261

RESUMO

The emergence of quantum technologies is heating up the debate on quantum supremacy, usually focusing on the feasibility of looking good on paper algorithms in realistic settings, due to the vulnerability of quantum systems to myriad sources of noise. In this vein, an interesting example of quantum pseudo-telepathy games that quantum mechanical resources can theoretically outperform classical resources is the Magic Square game (MSG), in which two players play against a referee. Due to noise, however, the unit winning probability of the players can drop well below the classical limit. Here, we propose a timely and unprecedented experimental setup for quantum computation with quantum dots inside optical cavities, along with ancillary photons for realizing interactions between distant dots to implement the MSG. Considering various physical imperfections of our setup, we first show that the MSG can be implemented with the current technology, outperforming the classical resources under realistic conditions. Next, we show that our work gives rise to a new version of the game. That is, if the referee has information on the physical realization and strategy of the players, he can bias the game through filtered randomness, and increase his winning probability. We believe our work contributes to not only quantum game theory, but also quantum computing with quantum dots.

4.
Sci Rep ; 10(1): 3481, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32103078

RESUMO

Preparing large-scale multi-partite entangled states of quantum bits in each physical form such as photons, atoms or electrons for each specific application area is a fundamental issue in quantum science and technologies. Here, we propose a setup based on Pauli spin blockade (PSB) for the preparation of large-scale W states of electrons in a double quantum dot (DQD). Within the proposed scheme, two W states of n and m electrons respectively can be fused by allowing each W state to transfer a single electron to each quantum dot. The presence or absence of PSB then determines whether the two states have fused or not, leading to the creation of a W state of n + m - 2 electrons in the successful case. Contrary to previous works based on quantum dots or nitrogen-vacancy centers in diamond, our proposal does not require any photon assistance. Therefore the 'complex' integration and tuning of an optical cavity is not a necessary prerequisite. We also show how to improve the success rate in our setup. Because requirements are based on currently available technology and well-known sensing techniques, our scheme can directly contribute to the advances in quantum technologies and, in particular in solid state systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...