Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 4(3): eaao0043, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29670935

RESUMO

Optical control of states exhibiting macroscopic phase coherence in condensed matter systems opens intriguing possibilities for materials and device engineering, including optically controlled qubits and photoinduced superconductivity. Metastable states, which in bulk materials are often associated with the formation of topological defects, are of more practical interest. Scaling to nanosize leads to reduced dimensionality, fundamentally changing the system's properties. In one-dimensional superconducting nanowires, vortices that are present in three-dimensional systems are replaced by fluctuating topological defects of the phase. These drastically change the dynamical behavior of the superconductor and introduce dynamical periodic long-range ordered states when the current is driven through the wire. We report the control and manipulation of transitions between different dynamically stable states in superconducting δ3-MoN nanowire circuits by ultrashort laser pulses. Not only can the transitions between different dynamically stable states be precisely controlled by light, but we also discovered new photoinduced hidden states that cannot be reached under near-equilibrium conditions, created while laser photoexcited quasi-particles are outside the equilibrium condition. The observed switching behavior can be understood in terms of dynamical stabilization of various spatiotemporal periodic trajectories of the order parameter in the superconductor nanowire, providing means for the optical control of the superconducting phase with subpicosecond control of timing.

2.
Nat Commun ; 6: 10250, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26687762

RESUMO

The superconducting state in one-dimensional nanosystems is very delicate. While fluctuations of the phase of the superconducting wave function lead to the spontaneous decay of persistent supercurrents in thin superconducting wires and nanocircuits, discrete phase-slip fluctuations can also lead to more exotic phenomena, such as the appearance of metastable superconducting states in current-bearing wires. Here we show that switching between different metastable superconducting states in δ-MoN nanowires can be very effectively manipulated by introducing small amplitude electrical noise. Furthermore, we show that deterministic switching between metastable superconducting states with different numbers of phase-slip centres can be achieved in both directions with small electrical current pulse perturbations of appropriate polarity. The observed current-controlled bi-stability is in remarkable agreement with theoretically predicted trajectories of the system switching between different limit cycle solutions of a model one-dimensional superconductor.

3.
ACS Nano ; 9(10): 10133-41, 2015 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-26340376

RESUMO

In recent years, conversion chemical reactions, which are driven by ion diffusion, emerged as an important concept for formation of nanoparticles. Here we demonstrate that the slow anion diffusion in anion exchange reactions can be efficiently used to tune the disorder strength and the related electronic properties of nanoparticles. This paradigm is applied to high-temperature formation of titanium oxynitride nanoribbons, Ti(O,N), transformed from hydrogen titanate nanoribbons in an ammonia atmosphere. The nitrogen content, which determines the chemical disorder through random O/N occupancy and ion vacancies in the Ti(O,N) composition, increases with the reaction time. The presence of disorder has paramount effects on resistivity of Ti(O,N) nanoribbons. Atypically for metals, the resistivity increases with decreasing temperature due to the weak localization effects. From this state, superconductivity develops below considerably or completely suppressed critical temperatures, depending on the disorder strength. Our results thus establish the remarkable versatility of anion exchange for tuning of the electronic properties of Ti(O,N) nanoribbons and suggest that similar strategies may be applied to a vast number of nanostructures.

4.
Nanotechnology ; 25(2): 025601, 2014 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-24334438

RESUMO

We demonstrate a new and effective method of producing single-phase superconducting δ3-MoN nanowires from bundled Mo6SyIz (8.2 ≤ y + z ≤ 10) nanowire templates in the presence of ammonia gas. Magnetic susceptibility and electrical resistance measurements confirm single-phase material synthesis. Measurements of four-contact resistance on single wires with diameters above 100 nm in a magnetic field are used to determine the critical field, while diameter dependence and magnetization measurements are used to investigate the homogeneity of the nanowires.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...