Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EJNMMI Res ; 14(1): 11, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38294730

RESUMO

BACKGROUND: [15O]H2O PET/CT allows noninvasive quantification of tissue perfusion and can potentially play a future role in the diagnosis and treatment of peripheral artery disease. We aimed to evaluate the reliability of dynamic [15O]H2O PET imaging for measuring lower extremity skeletal muscle perfusion. Ten healthy participants underwent same-day test-retest study with six dynamic [15O]H2O PET scans of lower legs and feet. Manual volume-of-interests were drawn in skeletal muscles, and PET time activity curves were extracted. K1 values (mL/min/100 mL) were estimated using a single-tissue compartment model (1TCM), autoradiography (ARG), and parametric imaging with blood input functions obtained from separate heart scans. RESULTS: Resting perfusion values in the muscle groups of the lower legs ranged from 1.18 to 5.38 mL/min/100 mL (ARG method). In the muscle groups of the feet, perfusion values ranged from 0.41 to 3.41 mL/min/100 mL (ARG method). Test-retest scans demonstrated a strong correlation and good repeatability for skeletal muscle perfusion with an intraclass correlation coefficient (ICC) of 0.88 and 0.87 and a repeatability coefficient of 34% and 53% for lower legs and feet, respectively. An excellent correlation was demonstrated when comparing volume-of-interest-based methods (1TCM and ARG) (lower legs: ICC = 0.96, feet: ICC = 0.99). Parametric images were in excellent agreement with the volume-of-interest-based ARG method (lower legs: ICC = 0.97, feet: ICC = 0.98). CONCLUSION: Parametric images and volume-of-interest-based methods demonstrated comparable resting perfusion values in the lower legs and feet of healthy individuals. The largest variation was seen between individuals, whereas a smaller variation was seen between muscle groups. Repeated measurements of resting blood flow yielded a strong overall correlation for all methods.

2.
Diabetologia ; 66(12): 2332-2345, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37728731

RESUMO

AIMS/HYPOTHESIS: Our aim was to investigate structural changes of cutaneous Schwann cells (SCs), including nociceptive Schwann cells (nSCs) and axons, in individuals with diabetic polyneuropathy. We also aimed to investigate the relationship between these changes and peripheral neuropathic symptoms in type 1 diabetes. METHODS: Skin biopsies (3 mm) taken from carefully phenotyped participants with type 1 diabetes without polyneuropathy (T1D, n=25), type 1 diabetes with painless diabetic polyneuropathy (T1DPN, n=30) and type 1 diabetes with painful diabetic polyneuropathy (P-T1DPN, n=27), and from healthy control individuals (n=25) were immunostained with relevant antibodies to visualise SCs and nerve fibres. Stereological methods were used to quantify the expression of cutaneous SCs and nerve fibres. RESULTS: There was a difference in the number density of nSCs not abutting to nerve fibres between the groups (p=0.004) but not in the number density of nSCs abutting to nerve fibres, nor in solitary or total subepidermal SC soma number density. The overall dermal SC expression (measured by dermal SC area fraction and subepidermal SC process density) and peripheral nerve fibre expression (measured by intraepidermal nerve fibre density, dermal nerve fibre area fraction and subepidermal nerve fibre density) differed between the groups (all p<0.05): significant differences were seen in participants with T1DPN and P-T1DPN compared with those without diabetic polyneuropathy (healthy control and T1D groups) (all p<0.05). No difference was found between participants in the T1DPN and P-T1DPN group, nor between participants in the T1D and healthy control group (all p>0.05). Correlational analysis showed that cutaneous SC processes and nerve fibres were highly associated, and they were weakly negatively correlated with different neuropathy measures. CONCLUSIONS/INTERPRETATION: Cutaneous SC processes and nerves, but not SC soma, are degenerated and interdependent in individuals with diabetic polyneuropathy. However, an increase in structurally damaged nSCs was seen in individuals with diabetic polyneuropathy. Furthermore, dermal SC processes and nerve fibres correlate weakly with clinical measures of neuropathy and may play a partial role in the pathophysiology of diabetic polyneuropathy in type 1 diabetes.


Assuntos
Diabetes Mellitus Tipo 1 , Neuropatias Diabéticas , Humanos , Diabetes Mellitus Tipo 1/complicações , Fibras Nervosas/patologia , Nervos Periféricos/patologia , Células de Schwann/patologia
3.
J Clin Endocrinol Metab ; 103(1): 115-124, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29053851

RESUMO

Context: Low birth weight (LBW; <2500 g) is linked to the development of insulin resistance and limbic-hypothalamic-pituitary-adrenal (LHPA) axis hyperactivity. Objective: Our first aim was to study insulin action, LHPA axis function, and limbic brain structures in young, healthy LBW men vs normal birthweight (NBW) controls (part 1). Our second aim was to investigate the effects of escitalopram vs placebo in LBW men in the LHPA axis and insulin sensitivity (part 2). Design Setting, Participants, and Intervention: The maximal (Rdmax) and submaximal (Rdsubmax) rates of insulin-stimulated glucose turnover, LHPA axis, and brain morphology were examined in 40 LBW men and 20 matched NBW men using two-stage hyperinsulinemic euglycemic clamp, 24-hour hormone plasma profiles, and magnetic resonance imaging. Subsequently, all LBW subjects underwent randomized and double-blind treatment with escitalopram 20 mg/d or placebo for 3 months followed by a complete reexamination. Main Outcome Measures (Part 2): Changes in Rdmax/Rdsubmax and plasma-free cortisol 24-hour area under the curve. Results: In LBW vs NBW, Rdsubmax and Rdmax were ∼16% (P = 0.01) and ∼12% (P = 0.01) lower, respectively, and 24-hour free cortisol levels were ∼20% higher (P = 0.02), primarily driven by a ∼99% increase at 05:00 am (P < 0.001). Furthermore, these changes were related to structural alterations within left thalamus and ventromedial prefrontal cortex. However, in LBW men, exposure to escitalopram normalized the free cortisol levels and improved the Rdsubmax by ∼24% (P = 0.04) compared with placebo. Conclusions: LBW vs NBW displayed alterations in key brain structures modulating the LHPA axis, elevated free cortisol levels, and insulin resistance. Escitalopram administration ameliorated these defects, suggesting a potential for LHPA axis modulation compounds to improve insulin action in LBW subjects.


Assuntos
Encefalopatias/complicações , Citalopram/uso terapêutico , Síndrome de Cushing/tratamento farmacológico , Recém-Nascido de Baixo Peso , Resistência à Insulina , Sistema Límbico/patologia , Adulto , Glicemia/metabolismo , Estudos de Casos e Controles , Síndrome de Cushing/etiologia , Síndrome de Cushing/metabolismo , Método Duplo-Cego , Seguimentos , Técnica Clamp de Glucose , Humanos , Insulina/metabolismo , Masculino , Prognóstico , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...