Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 11(9): 4750-4762, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33976845

RESUMO

Network analyses rarely include fitness components, such as germination, to tie invasive plants to population-level effects on the natives. We address this limitation in a previously studied network of flower visitors around a suite of native and invasive plants that includes an endemic plant at Badlands National Park, South Dakota, USA. Eriogonum visheri coflowers with two abundant invasive plants, Salsola tragus and Melilotus officinalis, as well as a common congener, E. pauciflorum. Network analyses had suggested strong linkages between E. visheri and S. tragus and E. pauciflorum, with a weaker link to M. officinalis. We measured visitation, pollen deposited on stigmas, achene weight and germination over three field seasons (two for germination) in four populations (two in the final season) of E. visheri and applied in situ pollen treatments to E. visheri, adding pollen from other flowers on the same plant; flowers on other E. visheri plants; S. tragus, M. officinalis, or E. pauciflorum; open pollination; or excluding pollinators. Insect visitation to E. visheri was not affected by floral abundance of any of the focal species. Most visitors were halictid bees; one of these (Lasioglossum packeri) was the only identified species to visit E. visheri all three years. Ninety-seven percent of pollen on collected E. visheri stigmas was conspecific, but 22% of flowers had >1 grain of E. pauciflorum pollen on stigmas and 7% had >1 grain of S. tragus pollen; <1% of flowers had M. officinalis pollen on stigmas. None of the pollen treatments produced significant differences in weight or germination of E. visheri achenes. We conclude that, in contrast to the results of the network analysis, neither of the invasive species poses a threat, via heterospecific pollen deposition, to pollination of the endemic E. visheri, and that its congener provides alternative pollen resources to its pollinators.

2.
Nat Commun ; 11(1): 6377, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33311448

RESUMO

Building trust in science and evidence-based decision-making depends heavily on the credibility of studies and their findings. Researchers employ many different study designs that vary in their risk of bias to evaluate the true effect of interventions or impacts. Here, we empirically quantify, on a large scale, the prevalence of different study designs and the magnitude of bias in their estimates. Randomised designs and controlled observational designs with pre-intervention sampling were used by just 23% of intervention studies in biodiversity conservation, and 36% of intervention studies in social science. We demonstrate, through pairwise within-study comparisons across 49 environmental datasets, that these types of designs usually give less biased estimates than simpler observational designs. We propose a model-based approach to combine study estimates that may suffer from different levels of study design bias, discuss the implications for evidence synthesis, and how to facilitate the use of more credible study designs.


Assuntos
Projetos de Pesquisa , Ciências Sociais , Viés , Biodiversidade , Ecologia , Meio Ambiente , Humanos , Literatura , Prevalência
3.
J Wildl Dis ; 56(1): 179-185, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31556838

RESUMO

Studies of captive gray wolves (Canis lupus) showed seasonal cycles in hematologic values and female body mass. We used a remotely controlled recapture collar to determine whether nine female and five male free-ranging wolves handled four to 17 times in NE Minnesota, US showed similar cycles. Hematocrit, hemoglobin, red blood cell count, mean corpuscular hemoglobin, mean corpuscular hemoglobin concentration, and body mass increased from summer toward a winter peak and then decreased again toward summer. Several hematologic values differed considerably from those of captive wolves, and the ranges in free-ranging wolves were much greater than those of captives.


Assuntos
Peso Corporal , Estações do Ano , Lobos/fisiologia , Animais , Feminino , Masculino , Minnesota , Fatores de Tempo , Lobos/sangue
4.
Ecol Appl ; 29(8): e01983, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31348559

RESUMO

Biodiversity offsetting, or compensatory mitigation, is increasingly being used in temperate grassland ecosystems to compensate for unavoidable environmental damage from anthropogenic developments such as transportation infrastructure, urbanization, and energy development. Pursuit of energy independence in the United States will expand domestic energy production. Concurrent with this increased growth is increased disruption to wildlife habitats, including avian displacement from suitable breeding habitat. Recent studies at energy-extraction and energy-generation facilities have provided evidence for behavioral avoidance and thus reduced use of habitat by breeding waterfowl and grassland birds in the vicinity of energy infrastructure. To quantify and compensate for this loss in value of avian breeding habitat, it is necessary to determine a biologically based currency so that the sufficiency of offsets in terms of biological equivalent value can be obtained. We describe a method for quantifying the amount of habitat needed to provide equivalent biological value for avifauna displaced by energy and transportation infrastructure, based on the ability to define five metrics: impact distance, impact area, pre-impact density, percent displacement, and offset density. We calculate percent displacement values for breeding waterfowl and grassland birds and demonstrate the applicability of our avian-impact offset method using examples for wind and oil infrastructure. We also apply our method to an example in which the biological value of the offset habitat is similar to the impacted habitat, based on similarity in habitat type (e.g., native prairie), geographical location, land use, and landscape composition, as well as to an example in which the biological value of the offset habitat is dissimilar to the impacted habitat. We provide a worksheet that informs potential users how to apply our method to their specific developments and a framework for developing decision-support tools aimed at achieving landscape-level conservation goals.


Assuntos
Aves , Ecossistema , Animais , Biodiversidade , Conservação dos Recursos Naturais , Vento
5.
Conserv Biol ; 30(1): 59-71, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26213098

RESUMO

The contribution of renewable energy to meet worldwide demand continues to grow. Wind energy is one of the fastest growing renewable sectors, but new wind facilities are often placed in prime wildlife habitat. Long-term studies that incorporate a rigorous statistical design to evaluate the effects of wind facilities on wildlife are rare. We conducted a before-after-control-impact (BACI) assessment to determine if wind facilities placed in native mixed-grass prairies displaced breeding grassland birds. During 2003-2012, we monitored changes in bird density in 3 study areas in North Dakota and South Dakota (U.S.A.). We examined whether displacement or attraction occurred 1 year after construction (immediate effect) and the average displacement or attraction 2-5 years after construction (delayed effect). We tested for these effects overall and within distance bands of 100, 200, 300, and >300 m from turbines. We observed displacement for 7 of 9 species. One species was unaffected by wind facilities and one species exhibited attraction. Displacement and attraction generally occurred within 100 m and often extended up to 300 m. In a few instances, displacement extended beyond 300 m. Displacement and attraction occurred 1 year after construction and persisted at least 5 years. Our research provides a framework for applying a BACI design to displacement studies and highlights the erroneous conclusions that can be made without the benefit of adopting such a design. More broadly, species-specific behaviors can be used to inform management decisions about turbine placement and the potential impact to individual species. Additionally, the avoidance distance metrics we estimated can facilitate future development of models evaluating impacts of wind facilities under differing land-use scenarios.


Assuntos
Distribuição Animal , Aves/fisiologia , Pradaria , Energia Renovável/efeitos adversos , Vento , Animais , Aprendizagem da Esquiva , North Dakota , South Dakota
6.
Ecology ; 96(9): 2417-32, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26594699

RESUMO

Better understanding the influence of precipitation and temperature on plant assemblages is needed to predict the effects of climate change. Many studies have examined the relationship between plant productivity and weather (primarily precipitation), but few have directly assessed the relationship between plant richness or diversity and weather despite their increased use as metrics of ecosystem condition. We focus on the grasslands of central North America, which are characterized by high temporal climatic variability. Over the next 100 years, these grasslands are predicted to experience further increased variability in growing season precipitation, as well as increased temperatures, due to global climate change. We assess the portion of interannual variability of richness and diversity explained by weather, how relationships between these metrics and weather vary among plant assemblages, and which aspects of weather best explain temporal variability. We used an information-theoretic approach to assess relationships between long-term plant richness and diversity patterns and a priori weather covariates using six data sets from four grasslands. Weather explained up to 49% and 63% of interannual variability in total plant species richness and diversity, respectively. However, richness and diversity responses to specific weather variables varied both among sites and among experimental treatments within sites. In general, we found many instances in which temperature was of equal or greater importance as precipitation, as well as evidence of the importance of lagged effects and precipitation or temperature variability. Although precipitation has been shown to be a key driver of productivity in grasslands, our results indicate that increasing temperatures alone, without substantial changes in precipitation patterns, could have measurable effects on Great Plains grassland plant assemblages and biodiversity metrics. Our results also suggest that richness and diversity will respond in unique ways to changing climate and management can affect these responses; additional research and monitoring will be essential for further understanding of these complex relationships.


Assuntos
Biodiversidade , Plantas/classificação , Tempo (Meteorologia) , Animais , Canadá , Demografia , Fatores de Tempo , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...