Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(22)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36430178

RESUMO

Polydopamine (PDA) has now been widely applied to electrochemical biosensing because of its excellent biocompatibility, abundant functional groups, and facile preparation. In this study, polydopamine nanoparticles (PDA-NPs)-functionalized electrochemical aptasensor was developed for the rapid, sensitive, and cost-effective detection of glycated albumin (GA), a promising biomarker for glycemic control in diabetic patients. PDA-NPs were synthesized at various pH conditions in Tris buffer. Cyclic voltammetry (CV) of PDA-NPs-coated screen-printed carbon electrodes (SPCEs) revealed that the materials were more conductive when PDA-NPs were synthesized at pH 9.5 and 10.5 than that at pH 8.5. At pH 10.5, the prepared PDA and PDA-aptamer NPs were monodispersed spherical morphology with an average size of 118.0 ± 1.9 and 127.8 ± 2.0 nm, respectively. When CV and electrochemical impedance spectrometry (EIS) were used for the characterization and detection of the electrochemical aptasensor under optimal conditions, the proposed aptasensor exhibited a broad linearity for detection of GA at a clinically relevant range of (1-10,000 µg mL-1), provided a low detection limit of 0.40 µg mL-1, appreciable reproducibility (less than 10%), and practicality (recoveries 90-104%). In addition, our developed aptasensor presented a great selectivity towards GA, compared to interfering substances commonly present in human serum, such as human serum albumin, urea, glucose, and bilirubin. Furthermore, the evaluation of the aptasensor performance against GA-spiked serum samples showed its probable applicability for clinical use. The developed PDA aptasensor demonstrated excellent sensitivity and selectivity towards GA detection with a simple and facile fabrication process. This proposed technique shows its potential application in GA measurement for improving the screening and management of diabetic patients in the future.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Nanopartículas Metálicas , Humanos , Aptâmeros de Nucleotídeos/química , Técnicas Eletroquímicas/métodos , Técnicas Biossensoriais/métodos , Limite de Detecção , Reprodutibilidade dos Testes , Nanopartículas Metálicas/química , DNA , Albumina Sérica Glicada
2.
In Vivo ; 36(3): 1155-1167, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35478144

RESUMO

BACKGROUND/AIM: Cholangiocarcinoma (CCA) is a stem cell-based cancer. The in vivo tumor microenvironment is not present in two-dimensional (2D) cultures, which is one of the limitations in cancer stem cell (CSC) research. Thus, we aimed to establish three-dimensional (3D) culture mimicking extracellular matrix (ECM) that could serve as a niche for CSC enrichment in CCA. MATERIALS AND METHODS: Silk fibroin-gelatin/hyaluronic acid/heparan sulfate (SF-GHHs) scaffolds were fabricated by lyophilization in various ratios and compared to silk fibroin (SF) scaffold. The physical and biological characteristics of the scaffolds were investigated. RESULTS: The SF-GHHs 1:2 scaffold with pore size of 350±102 µm harbored optimal porosity, good water uptake, and stable beta-sheet that supported the increase in KKU-213A cell proliferation and aggregation. The CSC and the epithelial-mesenchymal transition (EMT) markers were significantly upregulated in this scaffold compared to 2D. Moreover, drug sensitivity against cisplatin and gemcitabine in 3D culture was significantly higher than that in 2D culture. CONCLUSION: The SF-GHHs 1:2 scaffold could simulate ECM that may serve as a CSC niche of CCA, and reinforce stemness and EMT properties, suggesting its suitability for 3D CCA model, which supports CSC and new targeting drug research in CCA.


Assuntos
Colangiocarcinoma , Fibroínas , Transição Epitelial-Mesenquimal , Fibroínas/metabolismo , Fibroínas/farmacologia , Gelatina , Heparitina Sulfato , Humanos , Ácido Hialurônico , Engenharia Tecidual/métodos , Alicerces Teciduais , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...