Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4907, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38851760

RESUMO

Perovskite/silicon tandem solar cells hold great promise for realizing high power conversion efficiency at low cost. However, achieving scalable fabrication of wide-bandgap perovskite (~1.68 eV) in air, without the protective environment of an inert atmosphere, remains challenging due to moisture-induced degradation of perovskite films. Herein, this study reveals that the extent of moisture interference is significantly influenced by the properties of solvent. We further demonstrate that n-Butanol (nBA), with its low polarity and moderate volatilization rate, not only mitigates the detrimental effects of moisture in air during scalable fabrication but also enhances the uniformity of perovskite films. This approach enables us to achieve an impressive efficiency of 29.4% (certified 28.7%) for double-sided textured perovskite/silicon tandem cells featuring large-size pyramids (2-3 µm) and 26.3% over an aperture area of 16 cm2. This advance provides a route for large-scale production of perovskite/silicon tandem solar cells, marking a significant stride toward their commercial viability.

2.
Science ; 383(6685): 855-859, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38386724

RESUMO

Scalable fabrication of all-perovskite tandem solar cells is challenging because the narrow-bandgap subcells made of mixed lead-tin (Pb-Sn) perovskite films suffer from nonuniform crystallization and inferior buried perovskite interfaces. We used a dopant from Good's list of biochemical buffers, aminoacetamide hydrochloride, to homogenize perovskite crystallization and used it to extend the processing window for blade-coating Pb-Sn perovskite films and to selectively passivate defects at the buried perovskite interface. The resulting all-perovskite tandem solar module exhibited a certified power conversion efficiency of 24.5% with an aperture area of 20.25 square centimeters.

3.
Small ; : e2304650, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37863809

RESUMO

Implementation of proton-exchange membrane water electrolyzers for large-scale sustainable hydrogen production requires the replacement of scarce noble-metal anode electrocatalysts with low-cost alternatives. However, such earth-abundant materials often exhibit inadequate stability and/or catalytic activity at low pH, especially at high rates of the anodic oxygen evolution reaction (OER). Here, the authors explore the influence of a dielectric nanoscale-thin oxide layer, namely Al2 O3 , SiO2 , TiO2 , SnO2 , and HfO2 , prepared by atomic layer deposition, on the stability and catalytic activity of low-cost and active but insufficiently stable Co3 O4 anodes. It is demonstrated that the ALD layers improve both the stability and activity of Co3 O4 following the order of HfO2 > SnO2 > TiO2 > Al2 O3 , SiO2 . An optimal HfO2 layer thickness of 12 nm enhances the Co3 O4 anode durability by more than threefold, achieving over 42 h of continuous electrolysis at 10 mA cm-2 in 1 m H2 SO4 electrolyte. Density functional theory is used to investigate the superior performance of HfO2 , revealing a major role of the HfO2 |Co3 O4 interlayer forces in the stabilization mechanism. These insights offer a potential strategy to engineer earth-abundant materials for low-pH OER catalysts with improved performance from earth-abundant materials for efficient hydrogen production.

4.
ACS Appl Mater Interfaces ; 10(37): 31404-31412, 2018 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-30148608

RESUMO

All-solid-state lithium batteries (ASSLBs) based on sulfide solid electrolytes (SEs) have received great attention because of the high ionic conductivity of the SEs, intrinsic thermal safety, and higher energy density achievable with a Li metal anode. However, studies on practical slurry-cast composite electrodes show an extremely limited battery performance than the binder-free pelletized electrodes because of the poor interfacial robustness between the active materials and SEs by the presence of a polymeric binder. Here, we employ a low-temperature post-sintering process for the slurry-cast composite electrodes in order to overcome the binder-induced detrimental effects on the electrochemical performance. The LiI-doped Li3PS4 SEs are chosen because the addition of iodine not only improves the Li-ion conductivity and Li metal compatibility but also lowers the glass-transition and crystallization temperatures. Low-temperature post-sintering of composite cathodes consisting of a LiNi0.6Co0.2Mn0.2O2-active material, LiI-doped Li3PS4 SE, polymeric binder, and conducting agent shows a significantly improved electrochemical performance as compared to a conventional slurry-cast electrode containing pre-annealed SEs. Detailed analyses by electrochemical impedance spectroscopy and galvanostatic intermittent titration technique confirm that post-sintering effectively reduces the interfacial resistance and enhances the chemomechanical robustness at solid-solid interfaces, which enables the development of practical slurry-cast ASSLBs with sulfide SEs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...