Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Infect Immun ; 91(9): e0000223, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37594275

RESUMO

Ehrlichia chaffeensis has evolved multiple strategies to evade innate defenses of the mononuclear phagocyte. Recently, we reported the E. chaffeensis tandem repeat protein (TRP)120 effector functions as a Notch ligand mimetic and a ubiquitin ligase that degrades the nuclear tumor suppressor, F-box and WD repeat domain-containing 7, a negative regulator of Notch. The Notch intracellular domain (NICD) is known to inhibit apoptosis primarily by interacting with X-linked inhibitor of apoptosis protein (XIAP) to prevent degradation. In this study, we determined that E. chaffeensis activation of Notch signaling increases XIAP levels, thereby inhibiting apoptosis through both the intrinsic and executioner pathways. Increased NICD and XIAP levels were detected during E. chaffeensis infection and after TRP120 Notch ligand mimetic peptide treatment. Conversely, XIAP levels were reduced in the presence of Notch inhibitor DAPT. Cytoplasmic and nuclear colocalization of NICD and XIAP was observed during infection and a direct interaction was confirmed by co-immunoprecipitation. Procaspase levels increased temporally during infection, consistent with increased XIAP levels; however, knockdown (KD) of XIAP during infection significantly increased apoptosis and Caspase-3, -7, and -9 levels. Furthermore, treatment with SM-164, a second mitochondrial activator of caspases (Smac/DIABLO) antagonist, resulted in decreased procaspase levels and increased caspase activation, induced apoptosis, and significantly decreased infection. In addition, RNAi KD of XIAP also decreased infection and significantly increased apoptosis. Moreover, ectopic expression of TRP120 HECT Ub ligase catalytically defective mutant in HeLa cells decreased NICD and XIAP levels and increased caspase activation compared to HeLa cells with functional HECT Ub ligase catalytic activity (TRP120-WT). This investigation reveals a mechanism whereby E. chaffeensis modulates Notch signaling to stabilize XIAP and inhibit apoptosis.


Assuntos
Ehrlichia chaffeensis , Ehrlichiose , Humanos , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genética , Células HeLa , Ligantes , Apoptose , Caspases , Ehrlichia chaffeensis/genética
2.
Front Cell Infect Microbiol ; 13: 1175688, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37256108

RESUMO

Obligate intracellular bacteria in the order Rickettsiales are transmitted by arthropod vectors and cause life-threatening infections in humans and animals. While both type 1 and type 4 secretion systems (T1SS and T4SS) have been identified in this group, the most extensive studies of Rickettsiales T1SS and associated effectors have been performed in Ehrlichia. These studies have uncovered important roles for the T1SS effectors in pathobiology and immunity. To evade innate immune responses and promote intracellular survival, Ehrlichia and other related obligate pathogens secrete multiple T1SS effectors which interact with a diverse network of host targets associated with essential cellular processes. T1SS effectors have multiple functional activities during infection including acting as nucleomodulins and ligand mimetics that activate evolutionarily conserved cellular signaling pathways. In Ehrlichia, an array of newly defined major immunoreactive proteins have been identified that are predicted as T1SS substrates and have conformation-dependent antibody epitopes. These findings highlight the underappreciated and largely uncharacterized roles of T1SS effector proteins in pathobiology and immunity. This review summarizes current knowledge regarding roles of T1SS effectors in Rickettsiales members during infection and explores newly identified immunoreactive proteins as potential T1SS substrates and targets of a protective host immune response.


Assuntos
Rickettsiales , Sistemas de Secreção Tipo I , Humanos , Animais , Rickettsiales/metabolismo , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Tipo IV , Ehrlichia , Interações Hospedeiro-Patógeno
3.
Microbiol Spectr ; 11(3): e0528522, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37093014

RESUMO

Lipases, which catalyze the hydrolysis of long-chain triglycerides, diglycerides, and monoglycerides into free fatty acids and glycerol, participate in various biological pathways in fungi. In this study, we examined the biological functions and regulatory mechanisms of fungal lipases via two approaches. First, we performed a systemic functional characterization of 86 putative lipase-encoding genes in the plant-pathogenic fungus Fusarium graminearum. The phenotypes were assayed for vegetative growth, asexual and sexual reproduction, stress responses, pathogenicity, mycotoxin production, and lipase activity. Most mutants were normal in the assessed phenotypes, implying overlapping roles for lipases in F. graminearum. In particular, FgLip1 and Fgl1 were revealed as core extracellular lipases in F. graminearum. Second, we examined the lipase activity of previously constructed transcription factor (TF) mutants of F. graminearum and identified three TFs and one histone acetyltransferase that significantly affect lipase activity. The relative transcript levels of FgLIP1 and FGL1 were markedly reduced or enhanced in these TF mutants. Among them, Gzzc258 was identified as a key lipase regulator that is also involved in the induction of lipase activity during sexual reproduction. To our knowledge, this study is the first comprehensive functional analysis of fungal lipases and provides significant insights into the genetic and regulatory mechanisms underlying lipases in fungi. IMPORTANCE Fusarium graminearum is an economically important plant-pathogenic fungus that causes Fusarium head blight (FHB) on wheat and barley. Here, we constructed a gene knockout mutant library of 86 putative lipase-encoding genes and established a comprehensive phenotypic database of the mutants. Among them, we found that FgLip1 and Fgl1 act as core extracellular lipases in this pathogen. Moreover, several putative transcription factors (TFs) that regulate the lipase activities in F. graminearum were identified. The disruption mutants of F. graminearum-lipase regulatory TFs all showed defects in sexual reproduction, which implies a strong relationship between sexual development and lipase activity in this fungus. These findings provide valuable insights into the genetic mechanisms regulating lipase activity as well as its importance to the developmental stages of this plant-pathogenic fungus.


Assuntos
Fusarium , Fusarium/genética , Virulência/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação Fúngica da Expressão Gênica , Lipase/genética , Lipase/metabolismo , Doenças das Plantas/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
4.
Front Cell Infect Microbiol ; 13: 1150758, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36960039

RESUMO

As an obligately intracellular bacterial pathogen that selectively infects the mononuclear phagocyte, Ehrlichia chaffeensis has evolved sophisticated mechanisms to subvert innate immune defenses. While the bacterium accomplishes this through a variety of mechanisms, a rapidly expanding body of evidence has revealed that E. chaffeensis has evolved survival strategies that are directed by the versatile, intrinsically disordered, 120 kDa tandem repeat protein (TRP120) effector. E. chaffeensis establishes infection by manipulating multiple evolutionarily conserved cellular signaling pathways through effector-host interactions to subvert innate immune defenses. TRP120 activates these pathways using multiple functionally distinct, repetitive, eukaryote-mimicking short linear motifs (SLiMs) located within the tandem repeat domain that have evolved in nihilo. Functionally, the best characterized TRP120 SLiMs mimic eukaryotic ligands (SLiM-icry) to engage pathway-specific host receptors and activate cellular signaling, thereby repurposing these pathways to promote infection. Moreover, E. chaffeensis TRP120 contains SLiMs that are targets of post-translational modifications such as SUMOylation in addition to many other validated SLiMs that are curated in the eukaryotic linear motif (ELM) database. This review will explore the extracellular and intracellular roles TRP120 SLiM-icry plays during infection - mediated through a variety of SLiMs - that enable E. chaffeensis to subvert mononuclear phagocyte innate defenses.


Assuntos
Ehrlichia chaffeensis , Interações Hospedeiro-Patógeno , Monócitos/metabolismo , Ehrlichia chaffeensis/metabolismo , Processamento de Proteína Pós-Traducional , Linhagem Celular , Proteínas de Bactérias/genética
5.
bioRxiv ; 2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36711597

RESUMO

Ehrlichia chaffeensis has evolved multiple strategies to evade innate defenses of the mononuclear phagocyte. Recently, we reported the E. chaffeensis TRP120 effector functions as a Notch ligand mimetic and a ubiquitin ligase that degrades the nuclear tumor suppressor, F-box and WD repeat domain-containing 7 (FBW7), a negative regulator of Notch. The Notch receptor intracellular domain (NICD) is known to inhibit apoptosis primarily by interacting with X-linked inhibitor of apoptosis protein (XIAP) to prevent degradation. In this study, we determined E. chaffeensis activation of Notch signaling increases XIAP levels, thereby inhibiting intrinsic apoptosis. Increased NICD and XIAP levels were detected during E. chaffeensis infection and after TRP120 Notch ligand mimetic peptide treatment. Conversely, XIAP levels were reduced in the presence of Notch inhibitor DAPT. Cytoplasmic colocalization of NICD and XIAP was observed during infection and a direct interaction was confirmed by co-immunoprecipitation. Procaspase levels increased temporally during infection, consistent with increased XIAP levels; however, knockdown of XIAP during infection significantly increased apoptosis and Caspase-3, -7 and -9 levels. Further, treatment with SM-164, a second mitochondrial activator of caspases (Smac/DIABLO) antagonist, resulted in decreased procaspase levels and increased caspase activation, induced apoptosis, and significantly decreased infection. In addition, iRNA knockdown of XIAP also decreased infection and significantly increased apoptosis. Moreover, ectopic expression of TRP120 HECT Ub ligase catalytically defective mutant in HeLa cells decreased NICD and XIAP levels and increased caspase activation compared to WT. This investigation reveals a mechanism whereby E. chaffeensis repurposes Notch signaling to stabilize XIAP and inhibit apoptosis. Author Summary: Ehrlichia chaffeensis is a tick-borne, obligately intracellular bacterium that exhibits tropism for mononuclear phagocytes. E. chaffeensis survives by mobilizing various molecular strategies to promote cell survival, including modulation of apoptosis. This investigation reveals an E. chaffeensis initiated, Notch signaling regulated, antiapoptotic mechanism involving inhibitor of apoptosis proteins (IAPs). Herein, we demonstrate that E. chaffeensis induced Notch activation results in Notch intracellular domain stabilization of X-linked inhibitor of apoptosis protein (XIAP) to inhibit intrinsic apoptosis. This study highlights a novel mechanistic strategy whereby intracellular pathogens repurpose evolutionarily conserved eukaryotic signaling pathways to engage an antiapoptotic program for intracellular survival.

6.
mBio ; 13(2): e0007622, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35357214

RESUMO

Ehrlichia chaffeensis evades innate host defenses by reprogramming the mononuclear phagocyte through mechanisms that involve the exploitation of multiple evolutionarily conserved cellular signaling pathways, including Notch. This immune evasion strategy is directed in part by tandem repeat protein (TRP) effectors. Specifically, the TRP120 effector activates and regulates Notch signaling through interactions with the Notch receptor and the negative regulator, F-Box and WD repeat domain-containing 7 (FBW7). However, the specific molecular interactions and motifs required for E. chaffeensis TRP120-Notch receptor interaction and activation have not been defined. To investigate the molecular basis of TRP120 Notch activation, we compared TRP120 with endogenous canonical/noncanonical Notch ligands and identified a short region of sequence homology within the tandem repeat (TR) domain. TRP120 was predicted to share biological function with Notch ligands, and a function-associated sequence in the TR domain was identified. To investigate TRP120-Notch receptor interactions, colocalization between TRP120 and endogenous Notch-1 was observed. Moreover, direct interactions between full-length TRP120, the TRP120 TR domain containing the putative Notch ligand sequence, and the Notch receptor LBR were demonstrated. To molecularly define the TRP120 Notch activation motif, peptide mapping was used to identify an 11-amino acid short linear motif (SLiM) located within the TRP120 TR that activated Notch signaling and downstream gene expression. Peptide mutants of the Notch SLiM or anti-Notch SLiM antibody reduced or eliminated Notch activation and NICD nuclear translocation. This investigation reveals a novel molecularly defined pathogen encoded Notch SLiM mimetic that activates Notch signaling consistent with endogenous ligands. IMPORTANCE E. chaffeensis infects and replicates in mononuclear phagocytes, but how it evades innate immune defenses of this indispensable primary innate immune cell is not well understood. This investigation revealed the molecular details of a ligand mimicry cellular reprogramming strategy that involved a short linear motif (SLiM), which enabled E. chaffeensis to exploit host cell signaling to establish and maintain infection. E. chaffeensis TRP120 is a moonlighting effector that has been associated with cellular activation and other functions, including ubiquitin ligase activity. Herein, we identified and demonstrated that a SLiM present within each tandem repeat of TRP120 activated Notch signaling. Notch is an evolutionarily conserved signaling pathway responsible for many cell functions, including cell fate, development, and innate immunity. This study is significant because it revealed the first molecularly defined pathogen encoded SLiM that appears to have evolved de novo to mimic endogenous Notch ligands. Understanding Notch activation during E. chaffeensis infection provides a model to study pathogen exploitation of signaling pathways and will be useful in developing molecularly targeted countermeasures for inhibiting infection by a multitude of disease-causing pathogens that exploit cell signaling through molecular mimicry.


Assuntos
Ehrlichia chaffeensis , Ehrlichiose , Proteínas de Bactérias/metabolismo , Ehrlichia chaffeensis/genética , Interações Hospedeiro-Patógeno , Humanos , Ligantes , Monócitos/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais
7.
Infect Immun ; 89(2)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33229367

RESUMO

Chlamydia trachomatis, an obligate intracellular pathogen, undergoes a biphasic developmental cycle within a membrane-bound vacuole called the chlamydial inclusion. To facilitate interactions with the host cell, Chlamydia modifies the inclusion membrane with type III secreted proteins, called Incs. As with all chlamydial proteins, Incs are temporally expressed, modifying the chlamydial inclusion during the early and mid-developmental cycle. VAMP3 and VAMP4 are eukaryotic SNARE proteins that mediate membrane fusion and are recruited to the inclusion to facilitate inclusion expansion. Their recruitment requires de novo chlamydial protein synthesis during the mid-developmental cycle. Thus, we hypothesize that VAMP3 and VAMP4 are recruited by Incs. In chlamydia-infected cells, identifying Inc binding partners for SNARE proteins specifically has been elusive. To date, most studies examining chlamydial Inc and eukaryotic proteins have benefitted from stable interacting partners or a robust interaction at a specific time postinfection. While these types of interactions are the predominant class that have been identified, they are likely the exception to chlamydia-host interactions. Therefore, we applied two separate but complementary experimental systems to identify candidate chlamydial Inc binding partners for VAMPs. Based on these results, we created transformed strains of C. trachomatis serovar L2 to inducibly express a candidate Inc-FLAG protein. In chlamydia-infected cells, we found that five Incs temporally and transiently interact with VAMP3. Further, loss of incA or ct813 expression altered VAMP3 localization to the inclusion. For the first time, our studies demonstrate the transient nature of certain host protein-Inc interactions that contribute to the chlamydial developmental cycle.


Assuntos
Infecções por Chlamydia/metabolismo , Chlamydia trachomatis/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Corpos de Inclusão/metabolismo , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/metabolismo , Proteína 3 Associada à Membrana da Vesícula/metabolismo , Virulência/fisiologia , Infecções por Chlamydia/fisiopatologia , Humanos , Estados Unidos
8.
AIMS Microbiol ; 6(4): 451-469, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33364538

RESUMO

Exopolysaccharides (EPSs) are biological polymers secreted by microorganisms including Lactic acid bacteria (LAB) to cope with harsh environmental conditions. EPSs are one of the main components involved in the formation of extracellular biofilm matrix to protect microorganisms from adverse factors such as temperature, pH, antibiotics, host immune defenses, etc.. In this review, we discuss EPS biosynthesis; the role of EPSs in LAB stress tolerance; the impact of environmental stresses on EPS production and on the expression of genes involved in EPS synthesis. The evaluation results indicated that environmental stresses can alter EPS biosynthesis in LAB. For further studies, environmental stresses may be used to generate a new EPS type with high biological activity for industrial applications.

9.
Environ Microbiol ; 22(7): 2596-2612, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32100421

RESUMO

Fungal sexual reproduction requires complex cellular differentiation processes of hyphal cells. The plant pathogenic fungus Fusarium graminearum produces fruiting bodies called perithecia via sexual reproduction, and perithecia forcibly discharge ascospores into the air for disease initiation and propagation. Lipid metabolism and accumulation are closely related to perithecium formation, yet the molecular mechanisms that regulate these processes are largely unknown. Here, we report that a novel fungal specific bZIP transcription factor, F. graminearum perithecium overproducing 1 (Fpo1), plays a role as a global transcriptional repressor during perithecium production and maturation in F. graminearum. Deletion of FPO1 resulted in reduced vegetative growth, asexual sporulation and virulence and overproduced perithecium, which reached maturity earlier, compared with the wild type. Intriguingly, the hyphae of the fpo1 mutant accumulated excess lipids during perithecium production. Using a combination of molecular biological, transcriptomic and biochemical approaches, we demonstrate that repression of FPO1 after sexual induction leads to reprogramming of carbon metabolism, particularly fatty acid production, which affects sexual reproduction of this fungus. This is the first report of a perithecium-overproducing F. graminearum mutant, and the findings provide comprehensive insight into the role of modulation of carbon metabolism in the sexual reproduction of fungi.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Carbono/metabolismo , Carpóforos/metabolismo , Fusarium/genética , Fusarium/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Carpóforos/genética , Carpóforos/crescimento & desenvolvimento , Proteínas Fúngicas/genética , Fusarium/crescimento & desenvolvimento , Regulação Fúngica da Expressão Gênica/genética , Hifas/crescimento & desenvolvimento , Hifas/metabolismo , Metabolismo dos Lipídeos/genética , Doenças das Plantas/microbiologia , Esporos Fúngicos/metabolismo
10.
Front Microbiol ; 10: 2326, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31681199

RESUMO

Arsenite-resistance protein 2 (Ars2) is an important nuclear protein involved in various RNA metabolisms in animals and plants, but no Ars2 ortholog has been studied in filamentous fungi. Although it is an essential gene in most model eukaryotes, FgARS2 null mutants were viable in the plant pathogenic fungus Fusarium graminearum. The deletion of FgARS2 resulted in pleiotropic defects in various fungal developmental processes. Fgars2 mutants were irregular in nuclear division, and conidial germination was significantly retarded, causing the fungus to manifest its hypersensitive phenotypes under DNA damage stress. While FgARS2 deletion caused abnormal morphologies of ascospores and defective ascospore discharge, our data revealed that FgARS2 was not closely involved in small-non-coding RNA production in F. graminearum. The dominant nuclear localization of FgArs2-green fluorescent proteins (GFP) and abnormal nuclear division in FgARS2 deletion mutant implicated that FgArs2 functions in the nucleus. Intriguingly, we found that FgArs2 established a robust physical interaction with the cap binding complex (CBC) to form a tertiary complex CBC-Ars2 (CBCA), and disruption of any CBCA complex subunit drastically attenuated the virulence of F. graminearum. The results of the study indicate that Ars2 regulates fungal development, stress response, and pathogenesis via interaction with CBC in F. graminearum and provide a novel insight into understanding of the biological functions of Ars2 in filamentous fungi.

11.
Environ Microbiol ; 19(5): 2053-2067, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28296081

RESUMO

Fusarium graminearum is a prominent plant pathogenic fungus causing Fusarium head blight in major cereal crops worldwide. To understand the molecular mechanisms underlying fungal development and virulence, large collections of F. graminearum mutants have been constructed. Cytochrome P450 monooxygenases (P450s) are widely distributed in organisms and are involved in a diverse array of molecular/metabolic processes; however, no systematic functional analysis of P450s has been attempted in filamentous fungi. In this study, we constructed a genome-wide deletion mutant set covering 102 P450s and analyzed these mutants for changes in 38 phenotypic categories, including fungal development, stress responses and responses to several xenobiotics, to build a comprehensive phenotypic dataset. Most P450 mutants showing defective phenotypes were impaired in a single phenotypic trait, demonstrating that our mutant library is a good genetic resource for further fungal genetic studies. In particular, we identified novel P450s specifically involved in virulence (5) and both asexual (1) and sexual development (2). Most P450s seem to play redundant roles in the degradation of xenobiotics in F. graminearum. This study is the first phenome-based functional analysis of P450s, and it provides a valuable genetic resource for further basic and applied biological research in filamentous fungi and other plant pathogens.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Grão Comestível/microbiologia , Proteínas Fúngicas/genética , Fusarium/genética , Xenobióticos/metabolismo , Antifúngicos/metabolismo , Fusarium/patogenicidade , Técnicas de Inativação de Genes , Micélio/genética , Micélio/crescimento & desenvolvimento , Fenótipo , Doenças das Plantas/microbiologia , Deleção de Sequência , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento , Triticum/microbiologia , Virulência
12.
Sci Rep ; 6: 28154, 2016 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-27306495

RESUMO

Eukaryotic cells repress global translation and selectively upregulate stress response proteins by altering multiple steps in gene expression. In this study, genome-wide transcriptome analysis of cellular adaptation to thermal stress was performed on the plant pathogenic fungus Fusarium graminearum. The results revealed that profound alterations in gene expression were required for heat shock responses in F. graminearum. Among these proteins, heat shock protein 90 (FgHsp90) was revealed to play a central role in heat shock stress responses in this fungus. FgHsp90 was highly expressed and exclusively localised to nuclei in response to heat stress. Moreover, our comprehensive functional characterisation of FgHsp90 provides clear genetic evidence supporting its crucial roles in the vegetative growth, reproduction, and virulence of F. graminearum. In particular, FgHsp90 performs multiple functions as a transcriptional regulator of conidiation. Our findings provide new insight into the mechanisms underlying adaptation to heat shock and the roles of Hsp90 in fungal development.


Assuntos
Fusarium/crescimento & desenvolvimento , Fusarium/patogenicidade , Regulação Fúngica da Expressão Gênica/genética , Proteínas de Choque Térmico HSP90/genética , Resposta ao Choque Térmico/genética , Esporos Fúngicos/crescimento & desenvolvimento , Fusarium/genética , Expressão Gênica , Perfilação da Expressão Gênica , Genes Fúngicos/genética , Proteínas de Choque Térmico HSP90/metabolismo , Fatores de Transcrição/genética , Ativação Transcricional/genética
13.
PLoS One ; 11(1): e0147481, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26799401

RESUMO

The Ccr4-Not complex is evolutionarily conserved and important for multiple cellular functions in eukaryotic cells. In this study, the biological roles of the FgNot3 subunit of this complex were investigated in the plant pathogenic fungus Fusarium graminearum. Deletion of FgNOT3 resulted in retarded vegetative growth, retarded spore germination, swollen hyphae, and hyper-branching. The ΔFgnot3 mutants also showed impaired sexual and asexual sporulation, decreased virulence, and reduced expression of genes related to conidiogenesis. Fgnot3 deletion mutants were sensitive to thermal stress, whereas NOT3 orthologs in other model eukaryotes are known to be required for cell wall integrity. We found that FgNot3 functions as a negative regulator of the production of secondary metabolites, including trichothecenes and zearalenone. Further functional characterization of other components of the Not module of the Ccr4-Not complex demonstrated that the module is conserved. Each subunit primarily functions within the context of a complex and might have distinct roles outside of the complex in F. graminearum. This is the first study to functionally characterize the Not module in filamentous fungi and provides novel insights into signal transduction pathways in fungal development.


Assuntos
Proteínas Fúngicas/fisiologia , Fusarium/fisiologia , Hifas/crescimento & desenvolvimento , Esporos Fúngicos/crescimento & desenvolvimento , Ergosterol/metabolismo , Proteínas Fúngicas/genética , Fusarium/genética , Fusarium/crescimento & desenvolvimento , Fusarium/patogenicidade , Deleção de Genes , Genes Fúngicos/genética , Micotoxinas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...