Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Anal Methods Chem ; 2021: 6641796, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33489419

RESUMO

In this research, the kinetics of COD biodegradation and biogas production in a moving bed biofilm reactor (MBBR) at pilot scale (10 m3) for piggery wastewater treatment were investigated. Polyethylene (PE) was used as a carrying material, with organic loading rates (OLRs) of 10, 15, and 18 kgCOD/m3 day in accordance to hydraulic retention times (HRTs) of 0.56, 0.37, and 0.3 day. The results showed that a high COD removal efficiency was obtained in the range of 68-78% with the influent COD of 5.2-5.8 g/L at all 3 HRTs. About COD degradation kinetics, in comparison to the first- and second-order kinetics and the Monod model, Stover-Kincannon model showed the best fit with R 2 0.98 and a saturation value constant (K B ) and a maximum utilization rate (U max) of 52.40 g/L day and 82.65 g/L day, respectively. The first- and second-order kinetics with all 3 HRTs and Monod model with the HRT of 0.56 day also obtained high R 2 values. Therefore, these kinetics and models can be further considered to be used for predicting the kinetic characteristics of the MBBR system in piggery wastewater treatment process. The result of a 6-month operation of the MBBR was that biogas production was mostly in the operating period of days 17 to 80, around 0.2 to 0.3 and 0.15-0.20 L/gCODconverted, respectively, and then reduction at an OLR of 18 kgCOD/m3. After the start-up stage, day 35 biogas cumulative volume fluctuated from 20 to 30 m3/day and reached approximately 3500 m3 for 178 days during the whole digestive process. Methane is accounted for about 65-70% of biogas with concentration around 400 mg/L.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...