Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Hemasphere ; 8(7): e117, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38948925

RESUMO

Twenty percent of children with T-cell lymphoblastic lymphoma (T-LBL) will relapse and have an extremely poor outcome. Currently, we can identify a genetically low-risk subgroup in pediatric T-LBL, yet these high-risk patients who need intensified or alternative treatment options remain undetected. Therefore, there is an urgent need to recognize these high-risk T-LBL patients through identification of molecular characteristics and biomarkers. By using RNA sequencing which was performed in 29/49 T-LBL patients who were diagnosed in the Princess Maxima Center for Pediatric Oncology between 2018 and 2023, we discovered a previously unknown high-risk biological subgroup of children with T-LBL. This subgroup is characterized by NOTCH1 gene fusions, found in 21% of our T-LBL cohort (6/29). All patients presented with a large mediastinal mass, pleural/pericardial effusions, and absence of blasts in the bone marrow, blood, and central nervous system. Blood CCL17 (C-C Motif Chemokine Ligand 17, TARC) levels were measured at diagnosis in 26/29 patients, and all six patients with NOTCH1 gene fusions patients exclusively expressed highly elevated blood CCL17 levels, defining a novel and previously not known clinically relevant biomarker for T-cell lymphoblastic lymphoma. Four out of these six patients relapsed during therapy, a fifth developed a therapy-related acute myeloid leukemia during maintenance therapy. These data indicate that T-LBL patients with a NOTCH1 fusion have a high risk of relapse which can be easily identified using a blood CCL17 screening at diagnosis. Further molecular characterization through NOTCH1 gene fusion analysis offers these patients the opportunity for treatment intensification or new treatment strategies.

2.
Cancer Res ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38885294

RESUMO

Leukemia is characterized by oncogenic lesions that result in a block of differentiation while phenotypic plasticity is retained. A better understanding of how these two phenomena arise during leukemogenesis in humans could help inform diagnosis and treatment strategies. Here, we leveraged the well-defined differentiation states during T-cell development to pinpoint the initiation of T-cell acute lymphoblastic leukemia (T-ALL), an aggressive form of childhood leukemia, and study the emergence of phenotypic plasticity. Single-cell whole genome sequencing of leukemic blasts was combined with multiparameter flow cytometry to couple cell identity and clonal lineages. Irrespective of genetic events, leukemia-initiating cells altered their phenotypes by differentiation and de-differentiation. Construction of phylogenies of individual leukemias using somatic mutations revealed that phenotypic diversity is reflected by the clonal structure of the cancer. The analysis also indicated that the acquired phenotypes are heritable and stable. Together, these results demonstrate a transient period of plasticity during leukemia initiation where phenotypic switches appear unidirectional.

4.
Cell Rep ; 42(4): 112373, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37060567

RESUMO

Monoallelic inactivation of CCCTC-binding factor (CTCF) in human cancer drives altered methylated genomic states, altered CTCF occupancy at promoter and enhancer regions, and deregulated global gene expression. In patients with T cell acute lymphoblastic leukemia (T-ALL), we find that acquired monoallelic CTCF-inactivating events drive subtle and local genomic effects in nearly half of t(5; 14) (q35; q32.2) rearranged patients, especially when CTCF-binding sites are preserved in between the BCL11B enhancer and the TLX3 oncogene. These solitary intervening sites insulate TLX3 from the enhancer by inducing competitive looping to multiple binding sites near the TLX3 promoter. Reduced CTCF levels or deletion of the intervening CTCF site abrogates enhancer insulation by weakening competitive looping while favoring TLX3 promoter to BCL11B enhancer looping, which elevates oncogene expression levels and leukemia burden.


Assuntos
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Cromatina , Elementos Facilitadores Genéticos/genética , Mutação , Oncogenes , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo
5.
Haematologica ; 108(3): 732-746, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35734930

RESUMO

Physiological and pathogenic interleukin-7-receptor (IL7R)-induced signaling provokes glucocorticoid resistance in a subset of patients with pediatric T-cell acute lymphoblastic leukemia (T-ALL). Activation of downstream STAT5 has been suggested to cause steroid resistance through upregulation of anti-apoptotic BCL2, one of its downstream target genes. Here we demonstrate that isolated STAT5 signaling in various T-ALL cell models is insufficient to raise cellular steroid resistance despite upregulation of BCL2 and BCL-XL. Upregulation of anti-apoptotic BCL2 and BCLXL in STAT5-activated T-ALL cells requires steroid-induced activation of NR3C1. For the BCLXL locus, this is facilitated by a concerted action of NR3C1 and activated STAT5 molecules at two STAT5 regulatory sites, whereas for the BCL2 locus this is facilitated by binding of NR3C1 at a STAT5 binding motif. In contrast, STAT5 occupancy at glucocorticoid response elements does not affect the expression of NR3C1 target genes. Strong upregulation of BIM, a NR3C1 pro-apoptotic target gene, upon prednisolone treatment can counterbalance NR3C1/STAT5-induced BCL2 and BCL-XL expression downstream of IL7- induced or pathogenic IL7R signaling. This explains why isolated STAT5 activation does not directly impair the steroid response. Our study suggests that STAT5 activation only contributes to steroid resistance in combination with cellular defects or alternative signaling routes that disable the pro-apoptotic and steroid-induced BIM response.


Assuntos
Glucocorticoides , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Criança , Glucocorticoides/farmacologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Fator de Transcrição STAT5/metabolismo , Esteroides , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Linfócitos T/metabolismo , Apoptose
6.
Leukemia ; 35(12): 3394-3405, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34007050

RESUMO

(Patho-)physiological activation of the IL7-receptor (IL7R) signaling contributes to steroid resistance in pediatric T-cell acute lymphoblastic leukemia (T-ALL). Here, we show that activating IL7R pathway mutations and physiological IL7R signaling activate MAPK-ERK signaling, which provokes steroid resistance by phosphorylation of BIM. By mass spectrometry, we demonstrate that phosphorylated BIM is impaired in binding to BCL2, BCLXL and MCL1, shifting the apoptotic balance toward survival. Treatment with MEK inhibitors abolishes this inactivating phosphorylation of BIM and restores its interaction with anti-apoptotic BCL2-protein family members. Importantly, the MEK inhibitor selumetinib synergizes with steroids in both IL7-dependent and IL7-independent steroid resistant pediatric T-ALL PDX samples. Despite the anti-MAPK-ERK activity of ruxolitinib in IL7-induced signaling and JAK1 mutant cells, ruxolitinib only synergizes with steroid treatment in IL7-dependent steroid resistant PDX samples but not in IL7-independent steroid resistant PDX samples. Our study highlights the central role for MAPK-ERK signaling in steroid resistance in T-ALL patients, and demonstrates the broader application of MEK inhibitors over ruxolitinib to resensitize steroid-resistant T-ALL cells. These findings strongly support the enrollment of T-ALL patients in the current phase I/II SeluDex trial (NCT03705507) and contributes to the optimization and stratification of newly designed T-ALL treatment regimens.


Assuntos
Resistencia a Medicamentos Antineoplásicos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Esteroides/farmacologia , Animais , Apoptose , MAP Quinases Reguladas por Sinal Extracelular/genética , Humanos , Interleucina-7 , Janus Quinase 1/genética , Janus Quinase 1/metabolismo , Camundongos , Proteínas Quinases Ativadas por Mitógeno/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Receptores de Interleucina-7 , Transdução de Sinais , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Hemasphere ; 5(1): e513, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33364552

RESUMO

The glucocorticoid receptor NR3C1 is essential for steroid-induced apoptosis, and deletions of this gene have been recurrently identified at disease relapse for acute lymphoblastic leukemia (ALL) patients. Here, we demonstrate that recurrent NR3C1 inactivating aberrations-including deletions, missense, and nonsense mutations-are identified in 7% of pediatric T-cell ALL patients at diagnosis. These aberrations are frequently present in early thymic progenitor-ALL patients and relate to steroid resistance. Functional modeling of NR3C1 aberrations in pre-B ALL and T-cell ALL cell lines demonstrate that aberrations decreasing NR3C1 expression are important contributors to steroid resistance at disease diagnosis. Relative NR3C1 messenger RNA expression in primary diagnostic patient samples, however, does not correlate with steroid response.

8.
Cancer Discov ; 8(12): 1614-1631, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30266814

RESUMO

Deletion of chromosome 6q is a well-recognized abnormality found in poor-prognosis T-cell acute lymphoblastic leukemia (T-ALL). Using integrated genomic approaches, we identified two candidate haploinsufficient genes contiguous at 6q14, SYNCRIP (encoding hnRNP-Q) and SNHG5 (that hosts snoRNAs), both involved in regulating RNA maturation and translation. Combined silencing of both genes, but not of either gene alone, accelerated leukemogeneis in a Tal1/Lmo1/Notch1-driven mouse model, demonstrating the tumor-suppressive nature of the two-gene region. Proteomic and translational profiling of cells in which we engineered a short 6q deletion by CRISPR/Cas9 genome editing indicated decreased ribosome and mitochondrial activities, suggesting that the resulting metabolic changes may regulate tumor progression. Indeed, xenograft experiments showed an increased leukemia-initiating cell activity of primary human leukemic cells upon coextinction of SYNCRIP and SNHG5. Our findings not only elucidate the nature of 6q deletion but also highlight the role of ribosomes and mitochondria in T-ALL tumor progression. SIGNIFICANCE: The oncogenic role of 6q deletion in T-ALL has remained elusive since this chromosomal abnormality was first identified more than 40 years ago. We combined genomic analysis and functional models to show that the codeletion of two contiguous genes at 6q14 enhances malignancy through deregulation of a ribosome-mitochondria axis, suggesting the potential for therapeutic intervention.This article is highlighted in the In This Issue feature, p. 1494.


Assuntos
Deleção Cromossômica , Ribonucleoproteínas Nucleares Heterogêneas/genética , Leucemia de Células T/genética , RNA Longo não Codificante/genética , Ribossomos/metabolismo , Animais , Linhagem Celular Tumoral , Cromossomos Humanos Par 6 , Progressão da Doença , Perfilação da Expressão Gênica , Haploinsuficiência , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Humanos , Leucemia de Células T/metabolismo , Leucemia de Células T/patologia , Camundongos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Interferência de RNA , RNA Longo não Codificante/metabolismo , Transplante Heterólogo
9.
PLoS Med ; 13(12): e1002200, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27997540

RESUMO

BACKGROUND: Pediatric acute lymphoblastic leukemia (ALL) is the most common childhood cancer and the leading cause of cancer-related mortality in children. T cell ALL (T-ALL) represents about 15% of pediatric ALL cases and is considered a high-risk disease. T-ALL is often associated with resistance to treatment, including steroids, which are currently the cornerstone for treating ALL; moreover, initial steroid response strongly predicts survival and cure. However, the cellular mechanisms underlying steroid resistance in T-ALL patients are poorly understood. In this study, we combined various genomic datasets in order to identify candidate genetic mechanisms underlying steroid resistance in children undergoing T-ALL treatment. METHODS AND FINDINGS: We performed whole genome sequencing on paired pre-treatment (diagnostic) and post-treatment (remission) samples from 13 patients, and targeted exome sequencing of pre-treatment samples from 69 additional T-ALL patients. We then integrated mutation data with copy number data for 151 mutated genes, and this integrated dataset was tested for associations of mutations with clinical outcomes and in vitro drug response. Our analysis revealed that mutations in JAK1 and KRAS, two genes encoding components of the interleukin 7 receptor (IL7R) signaling pathway, were associated with steroid resistance and poor outcome. We then sequenced JAK1, KRAS, and other genes in this pathway, including IL7R, JAK3, NF1, NRAS, and AKT, in these 69 T-ALL patients and a further 77 T-ALL patients. We identified mutations in 32% (47/146) of patients, the majority of whom had a specific T-ALL subtype (early thymic progenitor ALL or TLX). Based on the outcomes of these patients and their prednisolone responsiveness measured in vitro, we then confirmed that these mutations were associated with both steroid resistance and poor outcome. To explore how these mutations in IL7R signaling pathway genes cause steroid resistance and subsequent poor outcome, we expressed wild-type and mutant IL7R signaling molecules in two steroid-sensitive T-ALL cell lines (SUPT1 and P12 Ichikawa cells) using inducible lentiviral expression constructs. We found that expressing mutant IL7R, JAK1, or NRAS, or wild-type NRAS or AKT, specifically induced steroid resistance without affecting sensitivity to vincristine or L-asparaginase. In contrast, wild-type IL7R, JAK1, and JAK3, as well as mutant JAK3 and mutant AKT, had no effect. We then performed a functional study to examine the mechanisms underlying steroid resistance and found that, rather than changing the steroid receptor's ability to activate downstream targets, steroid resistance was associated with strong activation of MEK-ERK and AKT, downstream components of the IL7R signaling pathway, thereby inducing a robust antiapoptotic response by upregulating MCL1 and BCLXL expression. Both the MEK-ERK and AKT pathways also inactivate BIM, an essential molecule for steroid-induced cell death, and inhibit GSK3B, an important regulator of proapoptotic BIM. Importantly, treating our cell lines with IL7R signaling inhibitors restored steroid sensitivity. To address clinical relevance, we treated primary T-ALL cells obtained from 11 patients with steroids either alone or in combination with IL7R signaling inhibitors; we found that including a MEK, AKT, mTOR, or dual PI3K/mTOR inhibitor strongly increased steroid-induced cell death. Therefore, combining these inhibitors with steroid treatment may enhance steroid sensitivity in patients with ALL. The main limitation of our study was the modest cohort size, owing to the very low incidence of T-ALL. CONCLUSIONS: Using an unbiased sequencing approach, we found that specific mutations in IL7R signaling molecules underlie steroid resistance in T-ALL. Future prospective clinical studies should test the ability of inhibitors of MEK, AKT, mTOR, or PI3K/mTOR to restore or enhance steroid sensitivity and improve clinical outcome.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genoma , Interleucina-7/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Esteroides/farmacologia , Adolescente , Criança , Pré-Escolar , Exoma , Humanos , Interleucina-7/metabolismo , Mutação , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/etiologia , Análise de Sequência de DNA
10.
Blood ; 124(4): 567-78, 2014 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-24904117

RESUMO

Phosphatase and tensin homolog (PTEN)-inactivating mutations and/or deletions are an independent risk factor for relapse of T-cell acute lymphoblastic leukemia (T-ALL) patients treated on Dutch Childhood Oncology Group or German Cooperative Study Group for Childhood Acute Lymphoblastic Leukemia protocols. Some monoallelic mutated or PTEN wild-type patients lack PTEN protein, implying that additional PTEN inactivation mechanisms exist. We show that PTEN is inactivated by small deletions affecting a few exons in 8% of pediatric T-ALL patients. These microdeletions were clonal in 3% and subclonal in 5% of patients. Conserved deletion breakpoints are flanked by cryptic recombination signal sequences (cRSSs) and frequently have non-template-derived nucleotides inserted in between breakpoints, pointing to an illegitimate RAG recombination-driven activity. Identified cRSSs drive RAG-dependent recombination in a reporter system as efficiently as bona fide RSSs that flank gene segments of the T-cell receptor locus. Remarkably, equivalent microdeletions were detected in thymocytes of healthy individuals. Microdeletions strongly associate with the TALLMO subtype characterized by TAL1 or LMO2 rearrangements. Primary and secondary xenotransplantation of TAL1-rearranged leukemia allowed development of leukemic subclones with newly acquired PTEN microdeletions. Ongoing RAG activity may therefore actively contribute to the acquisition of preleukemic hits, clonal diversification, and disease progression.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Deleção de Genes , Proteínas de Homeodomínio/genética , Proteínas com Domínio LIM/genética , PTEN Fosfo-Hidrolase/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Proteínas Proto-Oncogênicas/genética , Recombinação Genética/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Rearranjo Gênico , Humanos , Camundongos , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Proteína 1 de Leucemia Linfocítica Aguda de Células T , Transplante Heterólogo
11.
Haematologica ; 99(1): 94-102, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23975177

RESUMO

Three distinct immature T-cell acute lymphoblastic leukemia entities have been described including cases that express an early T-cell precursor immunophenotype or expression profile, immature MEF2C-dysregulated T-cell acute lymphoblastic leukemia cluster cases based on gene expression analysis (immature cluster) and cases that retain non-rearranged TRG@ loci. Early T-cell precursor acute lymphoblastic leukemia cases exclusively overlap with immature cluster samples based on the expression of early T-cell precursor acute lymphoblastic leukemia signature genes, indicating that both are featuring a single disease entity. Patients lacking TRG@ rearrangements represent only 40% of immature cluster cases, but no further evidence was found to suggest that cases with absence of bi-allelic TRG@ deletions reflect a distinct and even more immature disease entity. Immature cluster/early T-cell precursor acute lymphoblastic leukemia cases are strongly enriched for genes expressed in hematopoietic stem cells as well as genes expressed in normal early thymocyte progenitor or double negative-2A T-cell subsets. Identification of early T-cell precursor acute lymphoblastic leukemia cases solely by defined immunophenotypic criteria strongly underestimates the number of cases that have a corresponding gene signature. However, early T-cell precursor acute lymphoblastic leukemia samples correlate best with a CD1 negative, CD4 and CD8 double negative immunophenotype with expression of CD34 and/or myeloid markers CD13 or CD33. Unlike various other studies, immature cluster/early T-cell precursor acute lymphoblastic leukemia patients treated on the COALL-97 protocol did not have an overall inferior outcome, and demonstrated equal sensitivity levels to most conventional therapeutic drugs compared to other pediatric T-cell acute lymphoblastic leukemia patients.


Assuntos
Leucemia de Células T/genética , Leucemia de Células T/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Transcriptoma , Adolescente , Criança , Pré-Escolar , Aberrações Cromossômicas , Feminino , Regulação Leucêmica da Expressão Gênica , Humanos , Imunofenotipagem , Lactente , Leucemia de Células T/mortalidade , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/metabolismo , Masculino , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Receptores de Antígenos de Linfócitos T/genética
12.
Haematologica ; 97(9): 1405-13, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22491738

RESUMO

BACKGROUND: PI3K/AKT pathway mutations are found in T-cell acute lymphoblastic leukemia, but their overall impact and associations with other genetic aberrations is unknown. PTEN mutations have been proposed as secondary mutations that follow NOTCH1-activating mutations and cause cellular resistance to γ-secretase inhibitors. DESIGN AND METHODS: The impact of PTEN, PI3K and AKT aberrations was studied in a genetically well-characterized pediatric T-cell leukemia patient cohort (n=146) treated on DCOG or COALL protocols. RESULTS: PTEN and AKT E17K aberrations were detected in 13% and 2% of patients, respectively. Defective PTEN-splicing was identified in incidental cases. Patients without PTEN protein but lacking exon-, splice-, promoter mutations or promoter hypermethylation were present. PTEN/AKT mutations were especially abundant in TAL- or LMO-rearranged leukemia but nearly absent in TLX3-rearranged patients (P=0.03), the opposite to that observed for NOTCH1-activating mutations. Most PTEN/AKT mutant patients either lacked NOTCH1-activating mutations (P=0.006) or had weak NOTCH1-activating mutations (P=0.011), and consequently expressed low intracellular NOTCH1, cMYC and MUSASHI levels. T-cell leukemia patients without PTEN/AKT and NOTCH1-activating mutations fared well, with a cumulative incidence of relapse of only 8% versus 35% for PTEN/AKT and/or NOTCH1-activated patients (P=0.005). CONCLUSIONS: PI3K/AKT pathway aberrations are present in 18% of pediatric T-cell acute lymphoblastic leukemia patients. Absence of strong NOTCH1-activating mutations in these cases may explain cellular insensitivity to γ-secretase inhibitors.


Assuntos
Aberrações Cromossômicas , Mutação/genética , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 3-Quinases/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Proteínas Proto-Oncogênicas c-akt/genética , Adolescente , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Criança , Pré-Escolar , Estudos de Coortes , Hibridização Genômica Comparativa , DNA de Neoplasias/genética , Feminino , Seguimentos , Humanos , Lactente , Masculino , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/mortalidade , Prognóstico , Receptor Notch1/genética , Taxa de Sobrevida
13.
Haematologica ; 97(2): 258-61, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22058201

RESUMO

Translocation of the LYL1 oncogene are rare in T-cell acute lymphoblastic leukemia, whereas the homologous TAL1 gene is rearranged in approximately 20% of patients. Previous gene-expression studies have identified an immature T-cell acute lymphoblastic leukemia subgroup with high LYL1 expression in the absence of chromosomal aberrations. Molecular characterization of a t(7;19)(q34;p13) in a pediatric T-cell acute lymphoblastic leukemia patient led to the identification of a translocation between the TRB@ and LYL1 loci. Similar to incidental T-cell acute lymphoblastic leukemia cases with synergistic, double translocations affecting TAL1/2 and LMO1/2 oncogenes, this LYL1-translocated patient also had an LMO2 rearrangement pointing to oncogenic cooperation between LYL1 and LMO2. In hierarchical cluster analyses based on gene-expression data, this sample consistently clustered along with cases having TAL1 or LMO2 rearrangements. Therefore, LYL1-rearranged cases are not necessarily associated with immature T-cell development, despite high LYL1 levels, but elicit a TALLMO expression signature.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas com Domínio LIM/genética , Proteínas de Neoplasias/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Proteínas Proto-Oncogênicas/genética , Translocação Genética/genética , Criança , Análise por Conglomerados , Humanos , Masculino , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Células Tumorais Cultivadas
14.
Cancer Cell ; 19(4): 484-97, 2011 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-21481790

RESUMO

To identify oncogenic pathways in T cell acute lymphoblastic leukemia (T-ALL), we combined expression profiling of 117 pediatric patient samples and detailed molecular-cytogenetic analyses including the Chromosome Conformation Capture on Chip (4C) method. Two T-ALL subtypes were identified that lacked rearrangements of known oncogenes. One subtype associated with cortical arrest, expression of cell cycle genes, and ectopic NKX2-1 or NKX2-2 expression for which rearrangements were identified. The second subtype associated with immature T cell development and high expression of the MEF2C transcription factor as consequence of rearrangements of MEF2C, transcription factors that target MEF2C, or MEF2C-associated cofactors. We propose NKX2-1, NKX2-2, and MEF2C as T-ALL oncogenes that are activated by various rearrangements.


Assuntos
Genoma Humano , Proteínas de Homeodomínio/genética , Proteínas de Domínio MADS/genética , Fatores de Regulação Miogênica/genética , Proteínas Nucleares/genética , Oncogenes , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Fatores de Transcrição/genética , Transcrição Gênica , Adolescente , Proliferação de Células , Criança , Pré-Escolar , Análise por Conglomerados , Feminino , Regulação Leucêmica da Expressão Gênica , Rearranjo Gênico , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodomínio/fisiologia , Humanos , Lactente , Proteínas de Domínio MADS/fisiologia , Fatores de Transcrição MEF2 , Masculino , Fatores de Regulação Miogênica/fisiologia , Proteínas Nucleares/fisiologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/etiologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Fator Nuclear 1 de Tireoide , Fatores de Transcrição/fisiologia , Proteínas de Peixe-Zebra
15.
Haematologica ; 95(10): 1675-82, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20494936

RESUMO

BACKGROUND: Deregulation of microRNA may contribute to hematopoietic malignancies. MicroRNA-196b (miR-196b) is highly expressed in MLL-rearranged leukemia and has been shown to be activated by MLL and MLL-fusion genes. DESIGN AND METHODS: In order to determine whether high expression of miR-196b is restricted to MLL-rearranged leukemia, we used quantitative stem-loop reverse transcriptase polymerase chain reaction to measure the expression of this microRNA in 72 selected cases of pediatric acute lymphoblastic leukemia i.e. MLL-rearranged and non-MLL-rearranged precursor B-cell and T-cell acute lymphoblastic leukemias. We also determined the expression of HOXA-genes flanking miR-196 by microarray and real-time quantitative polymerase chain reaction. Furthermore, we used CpG island-arrays to explore the DNA methylation status of miR-196b and HOXA. RESULTS: We demonstrated that high expression of miR-196b is not unique to MLL-rearranged acute lymphoblastic leukemia but also occurs in patients with T-cell acute lymphoblastic leukemia patients carrying CALM-AF10, SET-NUP214 and inversion of chromosome 7. Like MLL-rearrangements, these abnormalities have been functionally linked with up-regulation of HOXA. In correspondence, miR-196b expression in these patients correlated strongly with the levels of HOXA family genes (Spearman's correlation coefficient ≥ 0.7; P≤0.005). Since miR-196b is encoded on the HOXA cluster, these data suggest co-activation of miR-196b and HOXA genes in acute lymphoblastic leukemia. Up-regulation of miR-196b coincides with reduced DNA methylation at CpG islands in the promoter regions of miR-196b and the entire HOXA cluster in MLL-rearranged cases compared to in cases of non-MLL precursor B-cell acute lymphoblastic leukemia and normal bone marrow (P<0.05), suggesting an epigenetic origin for miR-196b over-expression. Although patients with MLL-rearranged acute lymphoblastic leukemia are highly resistant to prednisolone and L-asparaginase, this resistance was not attributed to miR-196b expression. CONCLUSIONS: High expression of miR-196b is not exclusively MLL-driven but can also be found in other types of leukemia with aberrant activation of HOXA genes. Since miR-196b has been shown by others to exert oncogenic activity in bone marrow progenitor cells, the findings of the present study imply a potential role for miR-196b in the underlying biology of all HOXA-activated leukemias.


Assuntos
Regulação Leucêmica da Expressão Gênica , Proteínas de Homeodomínio/genética , MicroRNAs/genética , Proteína de Leucina Linfoide-Mieloide/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Criança , Epigenômica , Rearranjo Gênico , Humanos , MicroRNAs/biossíntese , Leucemia-Linfoma Linfoblástico de Células Precursoras/etiologia
16.
Lancet Oncol ; 10(2): 125-34, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19138562

RESUMO

BACKGROUND: Genetic subtypes of acute lymphoblastic leukaemia (ALL) are used to determine risk and treatment in children. 25% of precursor B-ALL cases are genetically unclassified and have intermediate prognosis. We aimed to use a genome-wide study to improve prognostic classification of ALL in children. METHODS: We constructed a classifier based on gene expression in 190 children with newly diagnosed ALL (German Cooperative ALL [COALL] discovery cohort) by use of double-loop cross-validation and validated this in an independent cohort of 107 newly diagnosed patients (Dutch Childhood Oncology Group [DCOG] independent validation cohort). Hierarchical cluster analysis with classifying gene-probe sets revealed a new ALL subtype, the underlying genetic abnormalities of which were characterised by comparative genomic hybridisation-arrays and molecular cytogenetics. FINDINGS: Our classifier predicted ALL subtype with a median accuracy of 90.0% (IQR 88.3-91.7) in the discovery cohort and correctly identified 94 of 107 patients (accuracy 87.9%) in the independent validation cohort. Without our classifier, 44 children in the COALL cohort and 33 children in the DCOG cohort would have been classified as B-other. However, hierarchical clustering showed that many of these genetically unclassified cases clustered with BCR-ABL1-positive cases: 30 (19%) of 154 children with precursor B-ALL in the COALL cohort and 14 (15%) of 92 children with precursor B-ALL in the DCOG cohort had this BCR-ABL1-like disease. In the COALL cohort, these patients had unfavourable outcome (5-year disease-free survival 59.5%, 95% CI 37.1-81.9) compared with patients with other precursor B-ALL (84.4%, 76.8-92.1%; p=0.012), a prognosis similar to that of patients with BCR-ABL1-positive ALL (51.9%, 23.1-80.6%). In the DCOG cohort, the prognosis of BCR-ABL1-like disease (57.1%, 31.2-83.1%) was worse than that of other precursor B-ALL (79.2%, 70.2-88.3%; p=0.026), and similar to that of BCR-ABL1-positive ALL (32.5%, 2.3-62.7%). 36 (82%) of the patients with BCR-ABL1-like disease had deletions in genes involved in B-cell development, including IKZF1, TCF3, EBF1, PAX5, and VPREB1; only nine (36%) of 25 patients with B-other ALL had deletions in these genes (p=0.0002). Compared with other precursor B-ALL cells, BCR-ABL1-like cells were 73 times more resistant to L-asparaginase (p=0.001) and 1.6 times more resistant to daunorubicin (p=0.017), but toxicity of prednisolone and vincristine did not differ. INTERPRETATION: New treatment strategies are needed to improve outcome for this newly identified high-risk subtype of ALL. FUNDING: Dutch Cancer Society, Sophia Foundation for Medical Research, Paediatric Oncology Foundation Rotterdam, Centre of Medical Systems Biology of the Netherlands Genomics Initiative/Netherlands Organisation for Scientific Research, American National Institute of Health, American National Cancer Institute, and American Lebanese Syrian Associated Charities.


Assuntos
Perfilação da Expressão Gênica , Leucemia-Linfoma Linfoblástico de Células Precursoras/classificação , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Criança , Pré-Escolar , Análise por Conglomerados , Hibridização Genômica Comparativa , Expressão Gênica , Genes abl/genética , Humanos , Estimativa de Kaplan-Meier , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Valor Preditivo dos Testes , Prognóstico , Resultado do Tratamento
17.
Blood ; 111(9): 4668-80, 2008 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-18299449

RESUMO

T-cell acute lymphoblastic leukemia (T-ALL) is mostly characterized by specific chromosomal abnormalities, some occurring in a mutually exclusive manner that possibly delineate specific T-ALL subgroups. One subgroup, including MLL-rearranged, CALM-AF10 or inv (7)(p15q34) patients, is characterized by elevated expression of HOXA genes. Using a gene expression-based clustering analysis of 67 T-ALL cases with recurrent molecular genetic abnormalities and 25 samples lacking apparent aberrations, we identified 5 new patients with elevated HOXA levels. Using microarray-based comparative genomic hybridization (array-CGH), a cryptic and recurrent deletion, del (9)(q34.11q34.13), was exclusively identified in 3 of these 5 patients. This deletion results in a conserved SET-NUP214 fusion product, which was also identified in the T-ALL cell line LOUCY. SET-NUP214 binds in the promoter regions of specific HOXA genes, where it interacts with CRM1 and DOT1L, which may transcriptionally activate specific members of the HOXA cluster. Targeted inhibition of SET-NUP214 by siRNA abolished expression of HOXA genes, inhibited proliferation, and induced differentiation in LOUCY but not in other T-ALL lines. We conclude that SET-NUP214 may contribute to the pathogenesis of T-ALL by enforcing T-cell differentiation arrest.


Assuntos
Proteínas Cromossômicas não Histona/genética , Perfilação da Expressão Gênica , Proteínas de Homeodomínio/genética , Leucemia-Linfoma de Células T do Adulto/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Proteínas de Fusão Oncogênica/fisiologia , Fatores de Transcrição/genética , Diferenciação Celular , Criança , Análise por Conglomerados , Proteínas de Ligação a DNA , Chaperonas de Histonas , Humanos , Leucemia-Linfoma de Células T do Adulto/etiologia , Ligação Proteica , Recidiva , Deleção de Sequência
18.
Blood ; 108(10): 3520-9, 2006 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-16873670

RESUMO

To identify new cytogenetic abnormalities associated with leukemogenesis or disease outcome, T-cell acute lymphoblastic leukemia (T-ALL) patient samples were analyzed by means of the array-comparative genome hybridization technique (array-CGH). Here, we report the identification of a new recurrent and cryptic deletion on chromosome 11 (del(11)(p12p13)) in about 4% (6/138) of pediatric T-ALL patients. Detailed molecular-cytogenetic analysis revealed that this deletion activates the LMO2 oncogene in 4 of 6 del(11)(p12p13)-positive T-ALL patients, in the same manner as in patients with an LMO2 translocation (9/138). The LMO2 activation mechanism of this deletion is loss of a negative regulatory region upstream of LMO2, causing activation of the proximal LMO2 promoter. LMO2 rearrangements, including this del(11)(p12p13) and t(11;14) (p13;q11) or t(7;11)(q35;p13), were found in the absence of other recurrent cytogenetic abnormalities involving HOX11L2, HOX11, CALM-AF10, TAL1, MLL, or MYC. LMO2 abnormalities represent about 9% (13/138) of pediatric T-ALL cases and are more frequent in pediatric T-ALL than appreciated until now.


Assuntos
Deleção Cromossômica , Cromossomos Humanos Par 11 , Proteínas de Ligação a DNA/metabolismo , Metaloproteínas/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proteínas Adaptadoras de Transdução de Sinal , Criança , Análise Citogenética , Proteínas de Ligação a DNA/genética , Regulação Leucêmica da Expressão Gênica , Rearranjo Gênico , Humanos , Imunofenotipagem , Proteínas com Domínio LIM , Metaloproteínas/genética , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas , Translocação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...