Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 19(4): e1010998, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37014908

RESUMO

The increase in microbial sequenced genomes from pure cultures and metagenomic samples reflects the current attainability of whole-genome and shotgun sequencing methods. However, software for genome visualization still lacks automation, integration of different analyses, and customizable options for non-experienced users. In this study, we introduce GenoVi, a Python command-line tool able to create custom circular genome representations for the analysis and visualization of microbial genomes and sequence elements. It is designed to work with complete or draft genomes, featuring customizable options including 25 different built-in color palettes (including 5 color-blind safe palettes), text formatting options, and automatic scaling for complete genomes or sequence elements with more than one replicon/sequence. Using a Genbank format file as the input file or multiple files within a directory, GenoVi (i) visualizes genomic features from the GenBank annotation file, (ii) integrates a Cluster of Orthologs Group (COG) categories analysis using DeepNOG, (iii) automatically scales the visualization of each replicon of complete genomes or multiple sequence elements, (iv) and generates COG histograms, COG frequency heatmaps and output tables including general stats of each replicon or contig processed. GenoVi's potential was assessed by analyzing single and multiple genomes of Bacteria and Archaea. Paraburkholderia genomes were analyzed to obtain a fast classification of replicons in large multipartite genomes. GenoVi works as an easy-to-use command-line tool and provides customizable options to automatically generate genomic maps for scientific publications, educational resources, and outreach activities. GenoVi is freely available and can be downloaded from https://github.com/robotoD/GenoVi.


Assuntos
Archaea , Bactérias , Archaea/genética , Bactérias/genética , Genômica/métodos , Software , Genoma Microbiano
2.
Genes (Basel) ; 13(7)2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35885909

RESUMO

Promoter identification is a fundamental step in understanding bacterial gene regulation mechanisms. However, accurate and fast classification of bacterial promoters continues to be challenging. New methods based on deep convolutional networks have been applied to identify and classify bacterial promoters recognized by sigma (σ) factors and RNA polymerase subunits which increase affinity to specific DNA sequences to modulate transcription and respond to nutritional or environmental changes. This work presents a new multiclass promoter prediction model by using convolutional neural networks (CNNs), denoted as PromoterLCNN, which classifies Escherichia coli promoters into subclasses σ70, σ24, σ32, σ38, σ28, and σ54. We present a light, fast, and simple two-stage multiclass CNN architecture for promoter identification and classification. Training and testing were performed on a benchmark dataset, part of RegulonDB. Comparative performance of PromoterLCNN against other CNN-based classifiers using four parameters (Acc, Sn, Sp, MCC) resulted in similar or better performance than those that commonly use cascade architecture, reducing time by approximately 30-90% for training, prediction, and hyperparameter optimization without compromising classification quality.


Assuntos
RNA Polimerases Dirigidas por DNA , Fator sigma , RNA Polimerases Dirigidas por DNA/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Regiões Promotoras Genéticas , Fator sigma/genética , Fator sigma/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...