Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Chest ; 166(1): 157-170, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38295950

RESUMO

BACKGROUND: Chest radiographs (CXRs) are still of crucial importance in primary diagnostics, but their interpretation poses difficulties at times. RESEARCH QUESTION: Can a convolutional neural network-based artificial intelligence (AI) system that interprets CXRs add value in an emergency unit setting? STUDY DESIGN AND METHODS: A total of 563 CXRs acquired in the emergency unit of a major university hospital were retrospectively assessed twice by three board-certified radiologists, three radiology residents, and three emergency unit-experienced nonradiology residents (NRRs). They used a two-step reading process: (1) without AI support; and (2) with AI support providing additional images with AI overlays. Suspicion of four suspected pathologies (pleural effusion, pneumothorax, consolidations suspicious for pneumonia, and nodules) was reported on a five-point confidence scale. Confidence scores of the board-certified radiologists were converted into four binary reference standards of different sensitivities. Performance by radiology residents and NRRs without AI support/with AI support were statistically compared by using receiver-operating characteristics (ROCs), Youden statistics, and operating point metrics derived from fitted ROC curves. RESULTS: NRRs could significantly improve performance, sensitivity, and accuracy with AI support in all four pathologies tested. In the most sensitive reference standard (reference standard IV), NRR consensus improved the area under the ROC curve (mean, 95% CI) in the detection of the time-critical pathology pneumothorax from 0.846 (0.785-0.907) without AI support to 0.974 (0.947-1.000) with AI support (P < .001), which represented a gain of 30% in sensitivity and 2% in accuracy (while maintaining an optimized specificity). The most pronounced effect was observed in nodule detection, with NRR with AI support improving sensitivity by 53% and accuracy by 7% (area under the ROC curve without AI support, 0.723 [0.661-0.785]; with AI support, 0.890 [0.848-0.931]; P < .001). Radiology residents had smaller, mostly nonsignificant gains in performance, sensitivity, and accuracy with AI support. INTERPRETATION: We found that in an emergency unit setting without 24/7 radiology coverage, the presented AI solution features an excellent clinical support tool to nonradiologists, similar to a second reader, and allows for a more accurate primary diagnosis and thus earlier therapy initiation.


Assuntos
Inteligência Artificial , Serviço Hospitalar de Emergência , Radiografia Torácica , Humanos , Radiografia Torácica/métodos , Estudos Retrospectivos , Masculino , Feminino , Competência Clínica , Pessoa de Meia-Idade , Curva ROC , Adulto , Idoso
2.
Invest Radiol ; 59(4): 306-313, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37682731

RESUMO

PURPOSE: To develop and validate an artificial intelligence algorithm for the positioning assessment of tracheal tubes (TTs) and central venous catheters (CVCs) in supine chest radiographs (SCXRs) by using an algorithm approach allowing for adjustable definitions of intended device positioning. MATERIALS AND METHODS: Positioning quality of CVCs and TTs is evaluated by spatially correlating the respective tip positions with anatomical structures. For CVC analysis, a configurable region of interest is defined to approximate the expected region of well-positioned CVC tips from segmentations of anatomical landmarks. The CVC/TT information is estimated by introducing a new multitask neural network architecture for jointly performing type/existence classification, course segmentation, and tip detection. Validation data consisted of 589 SCXRs that have been radiologically annotated for inserted TTs/CVCs, including an experts' categorical positioning assessment (reading 1). In-image positions of algorithm-detected TT/CVC tips could be corrected using a validation software tool (reading 2) that finally allowed for localization accuracy quantification. Algorithmic detection of images with misplaced devices (reading 1 as reference standard) was quantified by receiver operating characteristics. RESULTS: Supine chest radiographs were correctly classified according to inserted TTs/CVCs in 100%/98% of the cases, thereby with high accuracy in also spatially localizing the medical device tips: corrections less than 3 mm in >86% (TTs) and 77% (CVCs) of the cases. Chest radiographs with malpositioned devices were detected with area under the curves of >0.98 (TTs), >0.96 (CVCs with accidental vessel turnover), and >0.93 (also suboptimal CVC insertion length considered). The receiver operating characteristics limitations regarding CVC assessment were mainly caused by limitations of the applied CXR position definitions (region of interest derived from anatomical landmarks), not by algorithmic spatial detection inaccuracies. CONCLUSIONS: The TT and CVC tips were accurately localized in SCXRs by the presented algorithms, but triaging applications for CVC positioning assessment still suffer from the vague definition of optimal CXR positioning. Our algorithm, however, allows for an adjustment of these criteria, theoretically enabling them to meet user-specific or patient subgroups requirements. Besides CVC tip analysis, future work should also include specific course analysis for accidental vessel turnover detection.


Assuntos
Cateterismo Venoso Central , Cateteres Venosos Centrais , Humanos , Cateterismo Venoso Central/métodos , Inteligência Artificial , Radiografia , Radiografia Torácica/métodos
3.
J Appl Clin Med Phys ; 24(6): e13986, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37031365

RESUMO

PURPOSE: To define an optimal set of b-values for accurate derivation of diffusion MRI parameters in the brain with segmented Intravoxel Incoherent Motion (IVIM) model. METHODS: Simulations of diffusion signals were performed to define an optimal set of b-values targeting different perfusion regimes, by relying on an optimization procedure which minimizes the total relative error on estimated IVIM parameters computed with a segmented fitting procedure. Then, the optimal b-values set was acquired in vivo on healthy subjects and skull base chordoma patients to compare the optimized protocol with a clinical one. RESULTS: The total relative error on simulations decreased of about 40% when adopting the optimal set of 13 b-values (0 10 20 40 50 60 200 300 400 1200 1300 1400 1500 s/mm2 ), showing significant differences and increased precision on D and f estimates with respect to simulations with a non-optimized b-values set. Similarly, in vivo acquisitions demonstrated a dependency of IVIM parameters on the b-values array, with differences between the optimal set of b-values and a clinical non-optimized acquisition. IVIM parameters were compatible to literature values, with D (0.679/0.701 [0.022/0.008] ·10-3 mm2 /s), f (5.49/5.80 [0.70/1.14] %), and D* (8.25/7.67 [0.92/0.83] ·10-3 mm2 /s) median [interquartile range] estimates for white matter/gray matter in volunteers and D (0.709/0.715/1.06 [0.035/0.023/0.271] ·10-3 mm2 /s), f (7.08/7.84/21.54 [1.20/1.06/6.05] %), and D* (10.85/11.84/2.32 [1.38/2.32/4.94] ·10-3 mm2 /s) for white matter/gray matter/Gross Tumor Volume in patients with skull-base chordoma tumor. CONCLUSIONS: The definition of an optimal b-values set can improve the estimation of quantitative IVIM parameters. This allows setting up an optimized approach that can be adopted for IVIM studies in the brain.


Assuntos
Cordoma , Humanos , Encéfalo/diagnóstico por imagem , Movimento (Física) , Imagem de Difusão por Ressonância Magnética/métodos
4.
Med Phys ; 50(5): 2900-2913, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36602230

RESUMO

BACKGROUND: Quantitative imaging such as Diffusion-Weighted MRI (DW-MRI) can be exploited to non-invasively derive patient-specific tumor microstructure information for tumor characterization and local recurrence risk prediction in radiotherapy. PURPOSE: To characterize tumor microstructure according to proliferative capacity and predict local recurrence through microstructural markers derived from pre-treatment conventional DW-MRI, in skull-base chordoma (SBC) patients treated with proton (PT) and carbon ion (CIRT) radiotherapy. METHODS: Forty-eight patients affected by SBC, who underwent conventional DW-MRI before treatment and were enrolled for CIRT (n = 25) or PT (n = 23), were retrospectively selected. Clinically verified local recurrence information (LR) and histological information (Ki-67, proliferation index) were collected. Apparent diffusion coefficient (ADC) maps were calculated from pre-treatment DW-MRI and, from these, a set of microstructural parameters (cellular radius R, volume fraction vf, diffusion D) were derived by applying a fine-tuning procedure to a framework employing Monte Carlo simulations on synthetic cell substrates. In addition, apparent cellularity (ρapp ) was estimated from vf and R for an easier clinical interpretation. Histogram-based metrics (mean, median, variance, entropy) from estimated parameters were considered to investigate differences (Mann-Whitney U-test, α = 0.05) in estimated tumor microstructure in SBCs characterized by low or high cell proliferation (Ki-67). Recurrence-free survival analyses were also performed to assess the ability of the microstructural parameters to stratify patients according to the risk of local recurrence (Kaplan-Meier curves, log-rank test α = 0.05). RESULTS: Refined microstructural markers revealed optimal capabilities in discriminating patients according to cell proliferation, achieving best results with mean values (p-values were 0.0383, 0.0284, 0.0284, 0.0468, and 0.0088 for ADC, R, vf, D, and ρapp, respectively). Recurrence-free survival analyses showed significant differences between populations at high and low risk of local recurrence as stratified by entropy values of estimated microstructural parameters (p = 0.0110). CONCLUSION: Patient-specific microstructural information was non-invasively derived providing potentially useful tools for SBC treatment personalization and optimization in particle therapy.


Assuntos
Cordoma , Neoplasias de Cabeça e Pescoço , Neoplasias da Base do Crânio , Humanos , Imagem de Difusão por Ressonância Magnética/métodos , Cordoma/diagnóstico por imagem , Cordoma/radioterapia , Cordoma/patologia , Estudos Retrospectivos , Antígeno Ki-67 , Crânio
5.
Med Phys ; 50(2): 1000-1018, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36346042

RESUMO

PURPOSE: To investigate the static magnetic field generated by a proton pencil beam as a candidate for range verification by means of Monte Carlo simulations, thereby improving upon existing analytical calculations. We focus on the impact of statistical current fluctuations and secondary protons and electrons. METHODS: We considered a pulsed beam (10 µ ${\umu}$ s pulse duration) during the duty cycle with a peak beam current of 0.2 µ $\umu$ A and an initial energy of 100 MeV. We ran Geant4-DNA Monte Carlo simulations of a proton pencil beam in water and extracted independent particle phase spaces. We calculated longitudinal and radial current density of protons and electrons, serving as an input for a magnetic field estimation based on a finite element analysis in a cylindrical geometry. We made sure to allow for non-solenoidal current densities as is the case of a stopping proton beam. RESULTS: The rising proton charge density toward the range is not perturbed by energy straggling and only lowered through nuclear reactions by up to 15%, leading to an approximately constant longitudinal current. Their relative low density however (at most 0.37 protons/mm3 for the 0.2  µ ${\umu}$ A current and a beam cross-section of 2.5 mm), gives rise to considerable current density fluctuations. The radial proton current resulting from lateral scattering and being two orders of magnitude weaker than the longitudinal current is subject to even stronger fluctuations. Secondary electrons with energies above 10 eV, that far outnumber the primary protons, reduce the primary proton current by only 10% due to their largely isotropic flow. A small fraction of electrons (<1%), undergoing head-on collisions, constitutes the relevant electron current. In the far-field, both contributions to the magnetic field strength (longitudinal and lateral) are independent of the beam spot size. We also find that the nuclear reaction-related losses cause a shift of 1.3 mm to the magnetic field profile relative to the actual range, which is further enlarged to 2.4 mm by the electron current (at a distance of ρ = 50 $\rho =50$  mm away from the central beam axis). For ρ > 45 $\rho >45$  mm, the shift increases linearly. While the current density variations cause significant magnetic field uncertainty close to the central beam axis with a relative standard deviation (RSD) close to 100%, they average out at a distance of 10 cm, where the RSD of the total magnetic field drops below 2%. CONCLUSIONS: With the small influence of the secondary electrons together with the low RSD, our analysis encourages an experimental detection of the magnetic field through sensitive instrumentation, such as optical magnetometry or SQUIDs.


Assuntos
Terapia com Prótons , Prótons , Terapia com Prótons/métodos , Análise de Elementos Finitos , Campos Magnéticos , Método de Monte Carlo , DNA , Dosagem Radioterapêutica
6.
Br J Radiol ; 94(1128): 20210524, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34520670

RESUMO

OBJECTIVE: Carbon ion radiation therapy (CIRT) is an emerging radiation technique with advantageous physical and radiobiologic properties compared to conventional radiotherapy (RT) providing better response in case of radioresistant and hypoxic tumors. Our aim is to critically review if functional imaging techniques could play a role in predicting outcome of CIRT-treated tumors, as already proven for conventional RT. METHODS: 14 studies, concerning Magnetic resonance imaging (MRI) and Positron Emission Tomography (PET), were selected after a comprehensive search on multiple electronic databases from January 2000 to March 2020. RESULTS: MRI studies (n = 5) focused on diffusion-weighted MRI and, even though quantitative parameters were the same in all studies (apparent diffusion coefficient, ADC), results were not univocal, probably due to different imaging acquisition protocols and tumoral histology. For PET studies (n = 9), different tracers were used such as [18F]FDG and other uncommon tracers ([11C]MET, [18F]FLT), with a relevant heterogeneity regarding parameters used for outcome assessment. CONCLUSION: No conclusion can be drawn on the predictive value of functional imaging in CIRT-treated tumors. A standardization of image acquisition, multi-institutional large trials and external validations are needed in order to establish the prognostic value of functional imaging in CIRT and to guide clinical practice. ADVANCES IN KNOWLEDGE: Emerging studies focused on functional imaging's role in predicting CIRT outcome. Due to the heterogeneity of images acquisition and studies, results are conflicting and prospective large studies with imaging standardized protocol are needed.


Assuntos
Radioterapia com Íons Pesados/métodos , Imageamento por Ressonância Magnética/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/radioterapia , Tomografia por Emissão de Pósitrons/métodos , Humanos , Resultado do Tratamento
7.
Phys Med ; 84: 72-79, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33872972

RESUMO

PURPOSE: To evaluate changes in diffusion and perfusion-related properties of white matter (WM) induced by proton therapy, which is capable of a greater dose sparing to organs at risk with respect to conventional X-ray radiotherapy, and to eventually expose early manifestations of delayed neuro-toxicities. METHODS: Apparent diffusion coefficient (ADC) and IVIM parameters (D, D* and f) were estimated from diffusion-weighted MRI (DWI) in 46 patients affected by meningioma and treated with proton therapy. The impact on changes in diffusion and perfusion-related WM properties of dose and time, as well as the influence of demographic and pre-treatment clinical information, were investigated through linear mixed-effects models. RESULTS: Decreasing trends in ADC and D were found for WM regions hit by medium-high (30-40 Gy(RBE)) and high (>40 Gy(RBE)) doses, which are compatible with diffusion restriction due to radiation-induced cellular injury. Significant influence of dose and time on median ADC changes were observed. Also, D* showed a significant dependency on dose, whereas f consistently showed no dependency on dose and time. Age, gender and surgery extent were also found to affect changes in ADC. CONCLUSIONS: These results overall agree with those from studies conducted on cohorts of mixed proton and X-ray radiotherapy patients. Future work should focus on relating our findings with clinical information of co-morbidities and thus exploiting such or more advanced imaging data to build normal tissue complication probability models to better integrate clinical and dose information.


Assuntos
Neoplasias Meníngeas , Meningioma , Terapia com Prótons , Substância Branca , Imagem de Difusão por Ressonância Magnética , Humanos , Meningioma/diagnóstico por imagem , Meningioma/radioterapia , Terapia com Prótons/efeitos adversos , Substância Branca/diagnóstico por imagem
8.
Cancers (Basel) ; 13(2)2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33477723

RESUMO

Skull-base chordoma (SBC) can be treated with carbon ion radiotherapy (CIRT) to improve local control (LC). The study aimed to explore the role of multi-parametric radiomic, dosiomic and clinical features as prognostic factors for LC in SBC patients undergoing CIRT. Before CIRT, 57 patients underwent MR and CT imaging, from which tumour contours and dose maps were obtained. MRI and CT-based radiomic, and dosiomic features were selected and fed to two survival models, singularly or by combining them with clinical factors. Adverse LC was given by in-field recurrence or tumour progression. The dataset was split in development and test sets and the models' performance evaluated using the concordance index (C-index). Patients were then assigned a low- or high-risk score. Survival curves were estimated, and risk groups compared through log-rank tests (after Bonferroni correction α = 0.0083). The best performing models were built on features describing tumour shape and dosiomic heterogeneity (median/interquartile range validation C-index: 0.80/024 and 0.79/0.26), followed by combined (0.73/0.30 and 0.75/0.27) and CT-based models (0.77/0.24 and 0.64/0.28). Dosiomic and combined models could consistently stratify patients in two significantly different groups. Dosiomic and multi-parametric radiomic features showed to be promising prognostic factors for LC in SBC treated with CIRT.

9.
Neuroradiology ; 63(7): 1053-1060, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33392736

RESUMO

PURPOSE: To assess early microstructural changes of meningiomas treated with proton therapy through quantitative analysis of intravoxel incoherent motion (IVIM) and diffusion-weighted imaging (DWI) parameters. METHODS: Seventeen subjects with meningiomas that were eligible for proton therapy treatment were retrospectively enrolled. Each subject underwent a magnetic resonance imaging (MRI) including DWI sequences and IVIM assessments at baseline, immediately before the 1st (t0), 10th (t10), 20th (t20), and 30th (t30) treatment fraction and at follow-up. Manual tumor contours were drawn on T2-weighted images by two expert neuroradiologists and then rigidly registered to DWI images. Median values of the apparent diffusion coefficient (ADC), true diffusion (D), pseudo-diffusion (D*), and perfusion fraction (f) were extracted at all timepoints. Statistical analysis was performed using the pairwise Wilcoxon test. RESULTS: Statistically significant differences from baseline to follow-up were found for ADC, D, and D* values, with a progressive increase in ADC and D in conjunction with a progressive decrease in D*. MRI during treatment showed statistically significant differences in D values between t0 and t20 (p = 0.03) and t0 and t30 (p = 0.02), and for ADC values between t0 and t20 (p = 0.04), t10 and t20 (p = 0.02), and t10 and t30 (p = 0.035). Subjects that showed a volume reduction greater than 15% of the baseline tumor size at follow-up showed early D changes, whereas ADC changes were not statistically significant. CONCLUSION: IVIM appears to be a useful tool for detecting early microstructural changes within meningiomas treated with proton therapy and may potentially be able to predict tumor response.


Assuntos
Neoplasias Meníngeas , Meningioma , Terapia com Prótons , Imagem de Difusão por Ressonância Magnética , Humanos , Neoplasias Meníngeas/diagnóstico por imagem , Neoplasias Meníngeas/radioterapia , Meningioma/diagnóstico por imagem , Meningioma/radioterapia , Movimento (Física) , Estudos Retrospectivos
10.
Med Phys ; 48(3): 1250-1261, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33369744

RESUMO

PURPOSE: Proton therapy could benefit from noninvasively gaining tumor microstructure information, at both planning and monitoring stages. The anatomical location of brain tumors, such as meningiomas, often hinders the recovery of such information from histopathology, and conventional noninvasive imaging biomarkers, like the apparent diffusion coefficient (ADC) from diffusion-weighted MRI (DW-MRI), are nonspecific. The aim of this study was to retrieve discriminative microstructural markers from conventional ADC for meningiomas treated with proton therapy. These markers were employed for tumor grading and tumor response assessment. METHODS: DW-MRIs from patients affected by meningioma and enrolled in proton therapy were collected before (n = 35) and 3 months after (n = 25) treatment. For the latter group, the risk of an adverse outcome was inferred by their clinical history. Using Monte Carlo methods, DW-MRI signals were simulated from packings of synthetic cells built with well-defined geometrical and diffusion properties. Patients' ADC was modeled as a weighted sum of selected simulated signals. The weights that best described a patient's ADC were determined through an optimization procedure and used to estimate a set of markers of tumor microstructure: diffusion coefficient (D), volume fraction (vf), and radius (R). Apparent cellularity (ρapp ) was estimated from vf and R for an easier clinical interpretability. Differences between meningothelial and atypical subtypes, and low- and high-grade meningiomas were assessed with nonparametric statistical tests, whereas sensitivity and specificity with ROC analyses. Similar analyses were performed for patients showing low or high risk of an adverse outcome to preliminary evaluate response to treatment. RESULTS: Significant (P < 0.05) differences in median ADC, D, vf, R, and ρapp values were found when comparing meningiomas' subtypes and grades. ROC analyses showed that estimated microstructural parameters reached higher specificity than ADC for subtyping (0.93 for D and vf vs 0.80 for ADC) and grading (0.75 for R vs 0.67 for ADC). High- and low-risk patients showed significant differences in ADC and microstructural parameters. The skewness of ρapp was the parameter with highest AUC (0.90) and sensitivity (0.75). CONCLUSIONS: Matching measured with simulated ADC yielded a set of potential imaging markers for meningiomas grading and response monitoring in proton therapy, showing higher specificity than conventional ADC. These markers can provide discriminative information about spatial patterns of tumor microstructure implying important advantages for patient-specific proton therapy workflows.


Assuntos
Neoplasias Meníngeas , Meningioma , Terapia com Prótons , Imagem de Difusão por Ressonância Magnética , Humanos , Neoplasias Meníngeas/diagnóstico por imagem , Neoplasias Meníngeas/radioterapia , Meningioma/diagnóstico por imagem , Meningioma/radioterapia , Método de Monte Carlo , Gradação de Tumores
11.
Neuroradiology ; 62(11): 1441-1449, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32583368

RESUMO

PURPOSE: Meningiomas are mainly benign tumors, though a considerable proportion shows aggressive behaviors histologically consistent with atypia/anaplasia. Histopathological grading is usually assessed through invasive procedures, which is not always feasible due to the inaccessibility of the lesion or to treatment contraindications. Therefore, we propose a multi-parametric MRI assessment as a predictor of meningioma histopathological grading. METHODS: Seventy-three patients with 74 histologically proven and previously treated meningiomas were retrospectively enrolled (42 WHO I, 24 WHO II, 8 WHO III) and studied with MRI including T2 TSE, FLAIR, Gradient Echo, DWI, and pre- and post-contrast T1 sequences. Lesion masks were segmented on post-contrast T1 sequences and rigidly registered to ADC maps to extract quantitative parameters from conventional DWI and intravoxel incoherent motion model assessing tumor perfusion. Two expert neuroradiologists assessed morphological features of meningiomas with semi-quantitative scores. RESULTS: Univariate analysis showed different distributions (p < 0.05) of quantitative diffusion parameters (Wilcoxon rank-sum test) and morphological features (Pearson's chi-square; Fisher's exact test) among meningiomas grouped in low-grade (WHO I) and higher grade forms (WHO II/III); the only exception consisted of the tumor-brain interface. A multivariate logistic regression, combining all parameters showing statistical significance in the univariate analysis, allowed discrimination between the groups of meningiomas with high sensitivity (0.968) and specificity (0.925). Heterogeneous contrast enhancement and low ADC were the best independent predictors of atypia and anaplasia. CONCLUSION: Our multi-parametric MRI assessment showed high sensitivity and specificity in predicting histological grading of meningiomas. Such an assessment may be clinically useful in characterizing lesions without histological diagnosis. Key points • When surgery and biopsy are not feasible, parameters obtained from both conventional and diffusion-weighted MRI can predict atypia and anaplasia in meningiomas with high sensitivity and specificity. • Low ADC values and heterogeneous contrast enhancement are the best predictors of higher grade meningioma.


Assuntos
Imageamento por Ressonância Magnética/métodos , Neoplasias Meníngeas/patologia , Meningioma/patologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Biópsia , Meios de Contraste , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Masculino , Neoplasias Meníngeas/cirurgia , Meningioma/cirurgia , Pessoa de Meia-Idade , Gradação de Tumores , Valor Preditivo dos Testes , Sensibilidade e Especificidade
12.
Radiat Oncol ; 15(1): 93, 2020 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-32370788

RESUMO

The integration of magnetic resonance imaging (MRI) for guidance in external beam radiotherapy has faced significant research and development efforts in recent years. The current availability of linear accelerators with an embedded MRI unit, providing volumetric imaging at excellent soft tissue contrast, is expected to provide novel possibilities in the implementation of image-guided adaptive radiotherapy (IGART) protocols. This study reviews open medical physics issues in MR-guided radiotherapy (MRgRT) implementation, with a focus on current approaches and on the potential for innovation in IGART.Daily imaging in MRgRT provides the ability to visualize the static anatomy, to capture internal tumor motion and to extract quantitative image features for treatment verification and monitoring. Those capabilities enable the use of treatment adaptation, with potential benefits in terms of personalized medicine. The use of online MRI requires dedicated efforts to perform accurate dose measurements and calculations, due to the presence of magnetic fields. Likewise, MRgRT requires dedicated quality assurance (QA) protocols for safe clinical implementation.Reaction to anatomical changes in MRgRT, as visualized on daily images, demands for treatment adaptation concepts, with stringent requirements in terms of fast and accurate validation before the treatment fraction can be delivered. This entails specific challenges in terms of treatment workflow optimization, QA, and verification of the expected delivered dose while the patient is in treatment position. Those challenges require specialized medical physics developments towards the aim of fully exploiting MRI capabilities. Conversely, the use of MRgRT allows for higher confidence in tumor targeting and organs-at-risk (OAR) sparing.The systematic use of MRgRT brings the possibility of leveraging IGART methods for the optimization of tumor targeting and quantitative treatment verification. Although several challenges exist, the intrinsic benefits of MRgRT will provide a deeper understanding of dose delivery effects on an individual basis, with the potential for further treatment personalization.


Assuntos
Imageamento por Ressonância Magnética , Radioterapia Guiada por Imagem , Humanos , Campos Magnéticos , Neoplasias/diagnóstico por imagem , Neoplasias/radioterapia , Órgãos em Risco , Medicina de Precisão , Garantia da Qualidade dos Cuidados de Saúde , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
13.
Eur J Radiol ; 126: 108933, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32171109

RESUMO

PURPOSE: To evaluate if baseline ADC from DWI sequences could predict response to treatment in patients with sacral chordoma not suitable for surgery treated with carbon ion radiotherapy (CIRT) alone compared with volume changes. METHODS: Fifty-nine patients with sacral chordoma not suitable for surgery underwent one cycle of CIRT alone and a minimum of 12-months follow-up. All patients underwent MRI before treatment (baseline), every three months in the first two years after treatment, and every six months afterwards. For each MRI, lesion volume was obtained and median, kurtosis, and skewness ADC were analyzed within the whole lesion volume. Volume changes between baseline and the last available follow-up were used to divide patients with partial response, progression of disease and stable disease (PR, PD, and SD). RESULTS: Ten patients were excluded since DWI sequences from baseline MRI were not available. ADC maps obtained from baseline DWI examinations of 50 lesions in the remaining 49 patients were considered. Seven lesions were categorized as PD, 30 PR, and 13 SD. PD showed significantly higher median ADC values at baseline (p = 0.003) compared with both PR and SD (1665vs1253vs1263 *10-6 mm²/s), and more negative skewness values (-0.26vs0.26vs0.08), although not significantly different (p = 0.16). CONCLUSIONS: Preliminary results suggest that baseline ADC could predict response to treatment with CIRT, particularly to detect potential non-responder patients.


Assuntos
Cordoma/diagnóstico por imagem , Cordoma/radioterapia , Imagem de Difusão por Ressonância Magnética/métodos , Radioterapia com Íons Pesados/métodos , Neoplasias da Coluna Vertebral/diagnóstico por imagem , Neoplasias da Coluna Vertebral/radioterapia , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Estudos Retrospectivos , Sacro/diagnóstico por imagem , Resultado do Tratamento
14.
Magn Reson Imaging ; 67: 69-78, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31891760

RESUMO

Multiparametric MRI is a remarkable imaging method for the assessment of patho-physiological processes. In particular, brain tumor characterization has taken advantage of the development of advanced techniques such as Diffusion- (DWI) and Perfusion- (PWI) Weighted Imaging, but a thorough analysis of meningiomas is still lacking despite the variety of computational methods proposed. We compute perfusion and diffusion parametric maps relying on a well-defined methodological workflow, investigating possible correlations between pure and diffusion-based perfusion parameters in a cohort of 26 patients before proton therapy. A preliminary investigation of meningioma staging biomarkers based on IntraVoxel Incoherent Motion and Dynamic Susceptibility Contrast is also reported. We observed significant differences between the gross target volume and the normal appearing white matter for every investigated parameter, confirming the higher vascularization of the neoplastic tissue. DWI and PWI parameters appeared to be weakly correlated and we found that diffusion parameters - the perfusion fraction in particular - could be promising biomarkers for tumor staging.


Assuntos
Biomarcadores/metabolismo , Neoplasias Meníngeas/diagnóstico por imagem , Meningioma/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Adulto , Idoso , Biomarcadores Tumorais/metabolismo , Biópsia , Meios de Contraste , Imagem de Difusão por Ressonância Magnética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Movimento (Física) , Imageamento por Ressonância Magnética Multiparamétrica , Estadiamento de Neoplasias , Perfusão , Curva ROC
15.
Radiother Oncol ; 137: 32-37, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31051372

RESUMO

PURPOSE: To derive personalized tumour control probability (TCP) models, using diffusion-weighted (DW-) MRI for defining initial tumour cellular density in skull-base chordoma patients undergoing carbon-ion radiotherapy (CIRT). MATERIALS AND METHODS: 67 patients affected by skull-base chordoma were enrolled for a standardized CIRT treatment (70.4 Gy (RBE) prescription dose). Local control information was clinically assessed. For 20 of them, apparent diffusion coefficient (ADC) maps were computed from DW-MRI and then converted into cellular density. Radiosensitivity parameters (α, ß) were estimated from the available data through an optimization procedure, taking advantage of a relationship observed between local control and the dose received by at least the 98% of the gross tumour volume. These parameters were fed into two poissonian TCP models, based on the LQ model, being the first (TCPLIT) computed from literature parameters and the second (TCPADC) enriched by a personalized initial cellular density derived from ADC maps. RESULTS: The inclusion of the cellular density derived from ADC into TCPADC yielded slightly higher dose values at which TCP = 0.5 (D50 = 38.91 Gy (RBE)) with respect to TCPLIT (D5034.16 Gy (RBE)). This suggested a more conservative approach, even if the prognostic power of TCPADC and TCPLIT, tested with respect to local control, was equivalent in terms of sensitivity (0.867) and specificity (0.600). CONCLUSIONS: Both TCPADC and TCPLIT exhibited good agreement with a clinically validated information of local control, the former providing more conservative predictions.


Assuntos
Cordoma/radioterapia , Imagem de Difusão por Ressonância Magnética/métodos , Radioterapia com Íons Pesados , Neoplasias da Base do Crânio/radioterapia , Cordoma/diagnóstico por imagem , Radioterapia com Íons Pesados/métodos , Humanos , Probabilidade , Neoplasias da Base do Crânio/diagnóstico por imagem
16.
Phys Med ; 60: 58-65, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31000087

RESUMO

PURPOSE: To explore prognostic and predictive values of a novel quantitative feature set describing intra-tumor heterogeneity in patients with lung cancer treated with concurrent and sequential chemoradiotherapy. METHODS: Longitudinal PET-CT images of 30 patients with non-small cell lung cancer were analysed. To describe tumor cell heterogeneity, the tumors were partitioned into one to ten concentric regions depending on their sizes, and, for each region, the change in average intensity between the two scans was calculated for PET and CT images separately to form the proposed feature set. To validate the prognostic value of the proposed method, radiomics analysis was performed and a combination of the proposed novel feature set and the classic radiomic features was evaluated. A feature selection algorithm was utilized to identify the optimal features, and a linear support vector machine was trained for the task of overall survival prediction in terms of area under the receiver operating characteristic curve (AUROC). RESULTS: The proposed novel feature set was found to be prognostic and even outperformed the radiomics approach with a significant difference (AUROCSALoP = 0.90 vs. AUROCradiomic = 0.71) when feature selection was not employed, whereas with feature selection, a combination of the novel feature set and radiomics led to the highest prognostic values. CONCLUSION: A novel feature set designed for capturing intra-tumor heterogeneity was introduced. Judging by their prognostic power, the proposed features have a promising potential for early survival prediction.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Neoplasias Pulmonares/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Carcinoma Pulmonar de Células não Pequenas/terapia , Quimiorradioterapia , Seguimentos , Humanos , Modelos Lineares , Estudos Longitudinais , Pulmão/diagnóstico por imagem , Neoplasias Pulmonares/terapia , Prognóstico , Sensibilidade e Especificidade , Máquina de Vetores de Suporte , Análise de Sobrevida
17.
Phys Med ; 54: 21-29, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30337006

RESUMO

PURPOSE: A new set of quantitative features that capture intensity changes in PET/CT images over time and space is proposed for assessing the tumor response early during chemoradiotherapy. The hypothesis whether the new features, combined with machine learning, improve outcome prediction is tested. METHODS: The proposed method is based on dividing the tumor volume into successive zones depending on the distance to the tumor border. Mean intensity changes are computed within each zone, for CT and PET scans separately, and used as image features for tumor response assessment. Doing so, tumors are described by accounting for temporal and spatial changes at the same time. Using linear support vector machines, the new features were tested on 30 non-small cell lung cancer patients who underwent sequential or concurrent chemoradiotherapy. Prediction of 2-years overall survival was based on two PET-CT scans, acquired before the start and during the first 3 weeks of treatment. The predictive power of the newly proposed longitudinal pattern features was compared to that of previously proposed radiomics features and radiobiological parameters. RESULTS: The highest areas under the receiver operating characteristic curves were 0.98 and 0.93 for patients treated with sequential and concurrent chemoradiotherapy, respectively. Results showed an overall comparable performance with respect to radiomics features and radiobiological parameters. CONCLUSIONS: A novel set of quantitative image features, based on underlying tumor physiology, was computed from PET/CT scans and successfully employed to distinguish between early responders and non-responders to chemoradiotherapy.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Tomografia Computadorizada Quadridimensional , Humanos , Máquina de Vetores de Suporte , Fatores de Tempo , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...