Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Nanoscale ; 15(15): 7164-7175, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37009987

RESUMO

The production of 2D/2D heterostructures (HTs) with favorable electrochemical features is challenging, particularly for semiconductor transition metal dichalcogenides (TMDs). In this studies, we introduce a CO2 laser plotter-based technology for the realization of HT films comprising reduced graphene oxide (rGO) and 2D-TMDs (MoS2, WS2, MoSe2, and WSe2) produced via water phase exfoliation. The strategy relies on the Laser-Induced production of HeterosTructures (LIHTs), where after irradiation the nanomaterials exhibit changes in the morphological and chemical structure, becoming conductive easily transferable nanostructured films. The LIHTs were characterized in detail by SEM, XPS, Raman and electrochemical analysis. The laser treatment induces the conversion of GO into conductive highly exfoliated rGO decorated with homogeneously distributed small TMD/TM-oxide nanoflakes. The freestanding LIHT films obtained were employed to build self-contained sensors onto nitrocellulose, where the HT works both as a transducer and sensing surface. The proposed nitrocellulose-sensor manufacturing process is semi-automated and reproducible, multiple HT films may be produced in the same laser treatment and the stencil-printing allows customizable design. Excellent performance in the electroanalytical detection of different molecules such as dopamine (a neurotransmitter), catechin (a flavonol), and hydrogen peroxide was demonstrated, obtaining nanomolar limits of detection and satisfactory recovery rates in biological and agrifood samples, together with high fouling resistance. Considering the robust and rapid laser-induced production of HTs and the versatility of scribing desired patterns, the proposed approach appears as a disruptive technology for the development of electrochemical devices through sustainable and accessible strategies.

2.
Mikrochim Acta ; 188(11): 369, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34618244

RESUMO

A new green and effective sonochemical liquid-phase exfoliation (LPE) is proposed wherein a flavonoid compound, catechin (CT), promotes the formation of conductive, redox-active, water-phase stable graphene nanoflakes (GF). To maximize the GF-CT redox activity, the CT concentration and sonication time have been studied, and the best performing nanomaterial-fraction selected. Physicochemical and electrochemical methods have been employed to characterize the morphological, structural, and electrochemical features of the GF-CT nanoflakes. The obtained GF intercalated with CT exhibits fully reversible electrochemistry (ΔEp = 28 mV, ipa/ipc = ⁓1) because of the catecholic adducts. GF-CT-integrated electrochemistry was generated directly during LPE of graphite, with no need of graphene oxide production, nor activation steps, electropolymerization, or ex-post functionalization. The GF-CT electro-mediator ability has been proven towards hydrazine (HY) and ß-nicotinamide adenine dinucleotide (NADH) by simply drop-casting the redox-material onto screen-printed electrodes. GF-CT-based electrodes by using amperometry exhibited high sensitivity and extended linear ranges (HY: LOD = 0.1 µM, L.R. 0.5-150 µM; NADH: LOD = 0.6 µM, L.R. 2.5-200 µM) at low overpotential (+ 0.15 V) with no electrode fouling. The GF-CT electrodes are performing significantly better than commercial graphite electrodes and graphene nanoflakes exfoliated with a conventional surfactant, such as sodium cholate. Recoveries of 94-107% with RSD ≤ 8% (n = 3) for determination of HY and NADH in environmental and biological samples were achieved, proving the material functionality also in challenging analytical media. The presented GF-CT is a new functional redox-active material obtainable with a single-pot sustainable strategy, exhibiting standout properties particularly prone to (bio)sensors and cutting-edge device development.


Assuntos
Grafite
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...