Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Trop Biomed ; 36(2): 373-378, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33597398

RESUMO

Well-known medical herbal compounds including apigenin, daidzein, phyllanthin and tyramine were assessed against Trypanosoma and Leishmania protozoans. Two strains of the bloodstream forms of Trypanosoma brucei: s427-WT and TbAT1-B48, and Leishmania major and Leishmania mexicana promastigotes were utilised. Among selected natural compounds, apigenin and daidzein displayed moderate activity against African trypanosomes with EC50 16 µM for wild-type sensitive control strain. Tyramine was not found to be very active for trypanosomes strains while all compounds were found to have trivial activity for the inhibition of Leishmania mexicana strains.

2.
Eur J Med Chem ; 162: 364-377, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30453245

RESUMO

The multidrug-resistant Staphylococcus aureus (MRSA) is one of the most prevalent human pathogens involved in many minor to major disease burdens throughout the world. Inhibition of biofilm formation is an attractive strategy to treat diseases associated with MRSA infection. In the present investigation, a series of functional group diverse (hetero)aryl fluorosulfonyl analogs were designed, synthesized and tested as antibacterial agents against Staphylococcal spp., and as anti-biofilm candidates. Compounds 8, 15, and 67 were found to possess potent in vitro antibacterial activity among this class of sulfonyl fluorides (MIC = 0.818 ±â€¯0.42, 0.840 ±â€¯0.37 and 0.811 ±â€¯0.37 µg/mL respectively). The analogs 8, 15, 36, and 67 exhibited outstanding anti-biofilm properties compared to other available synthetic antibiotics. The efficacy of synthetic analogs displayed membrane-damaging effect and they are also validated by cellular content release assay. The insight physiological changes were explored by studying the intracellular redox activities through changing cyclic voltammetric (CV) method. The compounds 8, 15, 22, 32, 36, 51, and 67 were found to participate in the interfering in the electron transport chain (ETC) of MRSA. The analogs 8, 15, and 67 possess great potentiality for discovery and development of anti-staphylococcal drugs to treat the MRSA infections.


Assuntos
Infecções Bacterianas/tratamento farmacológico , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Fluoretos/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Sulfonas/farmacologia , Biofilmes/efeitos dos fármacos , Complexo de Proteínas da Cadeia de Transporte de Elétrons/efeitos dos fármacos , Simulação de Acoplamento Molecular , Oxirredução/efeitos dos fármacos , Infecções Estafilocócicas/tratamento farmacológico , Ácidos Sulfínicos/farmacologia
3.
Tropical Biomedicine ; : 373-378, 2019.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-777841

RESUMO

@#Well-known medical herbal compounds including apigenin, daidzein, phyllanthin and tyramine were assessed against Trypanosoma and Leishmania protozoans. Two strains of the bloodstream forms of Trypanosoma brucei: s427-WT and TbAT1-B48, and Leishmania major and Leishmania mexicana promastigotes were utilised. Among selected natural compounds, apigenin and daidzein displayed moderate activity against African trypanosomes with EC50 16 μM for wild-type sensitive control strain. Tyramine was not found to be very active for trypanosomes strains while all compounds were found to have trivial activity for the inhibition of Leishmania mexicana strains.

4.
Bioorg Chem ; 81: 107-118, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30118982

RESUMO

A series of aryl fluorosulfate analogues (1-37) were synthesized and tested for in vitro antibacterial and antifungal studies, and validated by docking studies. The compounds 9, 12, 14, 19, 25, 26, 35, 36 and 37 exhibited superior antibacterial potency against tested bacterial strains, while compounds 2, 4, 5, 15, 35, 36 and 37 were found to have better antifungal activity against tested fungal strains, compared to standard antibiotic gentamicin and ketoconazole respectively. Among all the synthesized 37 analogs, compounds 25, 26, 35, 36 and 37 displayed excellent anti-biofilm property against Staphylococcus aureus. The structure-activity relationship (SAR) revealed that the antimicrobial activity depends upon the presence of -OSO2F group and slender effect of different substituent's on the phenyl rings. The electron donating (OCH3) groups in analogs increase the antibacterial activity, and interestingly the electron withdrawing (Cl, NO2, F and Br) groups increase the antifungal activity (except compound 35, 36 and 37). The mechanism of potent compounds showed membrane damage on bacteria confirmed by SEM. Compounds 35, 36 and 37 exhibited highest glide g-scores in molecular docking studies and validated the biocidal property.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Fluoretos/farmacologia , Simulação de Acoplamento Molecular , Ácidos Sulfúricos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Antifúngicos/síntese química , Antifúngicos/química , Aspergillus niger/efeitos dos fármacos , Bacillus subtilis/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Fluoretos/síntese química , Fluoretos/química , Fusarium/efeitos dos fármacos , Humanos , Estrutura Molecular , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade , Ácidos Sulfúricos/síntese química , Ácidos Sulfúricos/química
5.
Bioorg Chem ; 80: 86-93, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29890362

RESUMO

The complications of Alzheimer's disease AD were deadly dangerous cause of neurodegenerative disorders connected with the decline of the cognitive functions and loss of memory. The common form of dementia is accounted as the sixth leading cause of the death affecting any stage of people in a lifetime. Synthetic natural chalcone analogs were currently a hot research topic for the treatment of (AD) which has affected millions of peoples throughout the world. The present aim was set to understand the important problems of the AD and its treatment based on natural derivatives of novel chalcones. One interesting strategy currently of searching for the treatment of AD is to find inhibitors for acetylcholinesterase (AChE) and using metal chelators to target amyloid-ß (Aß) peptides, and then metal-Aß complexes for the AD pathogenesis. The present compressed review focuses and highlights the design and synthesis of new approaches for the construction of important chalcones playing multiple beneficiary roles in the AD treatments. These hallmarks of concurred research represent the immediate needs of development of novel therapeutic drugs for effective treatment of ADs by understanding the specific pharmacology targets.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Chalconas/uso terapêutico , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Chalconas/química , Chalconas/metabolismo , Quelantes/química , Quelantes/uso terapêutico , Desenho de Fármacos , Humanos , Simulação de Acoplamento Molecular , Monoaminoxidase/química , Monoaminoxidase/metabolismo
6.
RSC Adv ; 8(10): 5473-5483, 2018 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35542417

RESUMO

Gram-negative members of the ESCAPE family are more difficult to treat, due to the presence of an additional barrier in the form of a lipopolysaccharide layer and the efficiency of efflux pumps to pump out the drugs from the cytoplasm. The development of alternative therapeutic strategies to tackle ESCAPE Gram-negative members is of extreme necessity to provide a solution to the cause of life-threatening infections. The present investigations demonstrated that compounds 17, 20, 25 and 26 possessing the presence of electron donating (OH and OCH3) groups on the phenyl rings are highly potent; whereas compounds 9, 10, 15, 16, 18, 33 and 36 showed moderate activity against Gram-negative bacteria. An excellent dose-dependent antibacterial activity was established compared to that of the standard antibiotic ampicillin. Significant anti-biofilm properties were measured quantitatively, showing optical density (O.D) values of 0.51 ± 015, 0.63 ± 0.20, 0.38 ± 0.07 and 0.62 ± 0.11 at 492 nm and the leakage of cellular components by the compounds, such as 17, 20, 25 and 26, increased the O.D. of respective treated samples compared to the control. In addition, the implication of experimental results is discussed in the light of the lack of survivability of planktonic bacteria and biofilm destruction in vitro. These results revealed the great significance of the development of a new generation of synthetic materials with greater efficacy in anti-biofilm properties by targeting to lock the bio-film associated protein Bap in Gram-negative bacteria.

7.
Pak J Biol Sci ; 16(21): 1368-72, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24511749

RESUMO

Hypertension is a widespread and frequently progressive ailment that imparts a foremost threat for cardiovascular and renal disorders. Mammoth efforts are needed for the synthesis of innovative antihypertensive agents to combat this lethal disease. Chalcones have shown antihypertensive activity through inhibition of Angiotensin Converting Enzyme (ACE). Hence, a series of chalcone analogues is synthesized and used as precursor for the synthesis of novel series of pyrimidines. Precursor chalcones were prepared by reacting aldehydes and ketones in presence of sodium hydroxide followed by synthesis of corresponding pyrimidines by reaction with urea in presence of potassium hydroxide. Both groups were then evaluated for their effects on ACE. The results depicted that pyrimidines were more active than chalcones with methoxy (C5 and P5) substitution showing best results to inhibit ACE. Given that chalcone analogues and pyrimidines show a potential as the angiotensin converting enzyme inhibitors.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/química , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Chalcona/análogos & derivados , Chalcona/farmacologia , Pirimidinas/química , Pirimidinas/farmacologia , Animais , Anti-Hipertensivos/síntese química , Anti-Hipertensivos/química , Anti-Hipertensivos/farmacologia , Chalcona/síntese química , Chalcona/química , Hipertensão/tratamento farmacológico , Hipertensão/metabolismo , Peptidil Dipeptidase A/metabolismo , Pirimidinas/síntese química , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...